基于层次强化学习的两轮机器人自平衡算法

Juan Yan, Huibin Yang
{"title":"基于层次强化学习的两轮机器人自平衡算法","authors":"Juan Yan, Huibin Yang","doi":"10.2174/1874129001610010069","DOIUrl":null,"url":null,"abstract":"Abstract: Self-balancing control is the basis for applications of two-wheeled robots. In order to improve the self-balancing of twowheeled robots, we propose a hierarchical reinforcement learning algorithm for controlling the balance of two-wheeled robots. After describing the subgoals of hierarchical reinforcement learning, we extract features for subgoals, define a feature value vector and its corresponding weight vector, and propose a reward function with additional subgoal reward function. Finally, we give a hierarchical reinforcement learning algorithm for finding the optimal strategy. Simulation experiments show that, the proposed algorithm is more effectiveness than traditional reinforcement learning algorithm in convergent speed. So in our system, the robots can get selfbalanced very quickly.","PeriodicalId":370221,"journal":{"name":"The Open Electrical & Electronic Engineering Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical Reinforcement Learning Based Self-balancing Algorithm for Two-wheeled Robots\",\"authors\":\"Juan Yan, Huibin Yang\",\"doi\":\"10.2174/1874129001610010069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: Self-balancing control is the basis for applications of two-wheeled robots. In order to improve the self-balancing of twowheeled robots, we propose a hierarchical reinforcement learning algorithm for controlling the balance of two-wheeled robots. After describing the subgoals of hierarchical reinforcement learning, we extract features for subgoals, define a feature value vector and its corresponding weight vector, and propose a reward function with additional subgoal reward function. Finally, we give a hierarchical reinforcement learning algorithm for finding the optimal strategy. Simulation experiments show that, the proposed algorithm is more effectiveness than traditional reinforcement learning algorithm in convergent speed. So in our system, the robots can get selfbalanced very quickly.\",\"PeriodicalId\":370221,\"journal\":{\"name\":\"The Open Electrical & Electronic Engineering Journal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Electrical & Electronic Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874129001610010069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Electrical & Electronic Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874129001610010069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要:自平衡控制是两轮机器人应用的基础。为了提高两轮机器人的自平衡能力,提出了一种控制两轮机器人平衡的分层强化学习算法。在对分层强化学习的子目标进行描述后,提取子目标的特征,定义特征值向量及其对应的权重向量,并提出带有附加子目标奖励函数的奖励函数。最后,我们给出了一种分层强化学习算法来寻找最优策略。仿真实验表明,该算法在收敛速度上优于传统的强化学习算法。所以在我们的系统中,机器人可以很快获得自平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Reinforcement Learning Based Self-balancing Algorithm for Two-wheeled Robots
Abstract: Self-balancing control is the basis for applications of two-wheeled robots. In order to improve the self-balancing of twowheeled robots, we propose a hierarchical reinforcement learning algorithm for controlling the balance of two-wheeled robots. After describing the subgoals of hierarchical reinforcement learning, we extract features for subgoals, define a feature value vector and its corresponding weight vector, and propose a reward function with additional subgoal reward function. Finally, we give a hierarchical reinforcement learning algorithm for finding the optimal strategy. Simulation experiments show that, the proposed algorithm is more effectiveness than traditional reinforcement learning algorithm in convergent speed. So in our system, the robots can get selfbalanced very quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信