从期权价格中恢复非线性动力学

Raul Gonzalez, O. Scaillet, Alexandre Engulatov
{"title":"从期权价格中恢复非线性动力学","authors":"Raul Gonzalez, O. Scaillet, Alexandre Engulatov","doi":"10.2139/ssrn.1944051","DOIUrl":null,"url":null,"abstract":"Using the wavelet-Galerkin method for solving partial integro-differential equations, we derive an implement computationally efficient formula for pricing European options on assets driven by multivariate jump-diffusions. This pricing formula is then used to solve the inverse problem of estimating the corresponding risk-neutral coefficient functions of the underlying jump-diffusions from observed option data. The ill-posedness of this estimation problem is proved, and a consistent estimation technique employing Tikhonov regularization is proposed. Using S&P 500 Index option data, it is shown that the coefficient functions in a stochastic volatility model with jumps are nonlinear, contrary to the affine specification widely used in the literature.","PeriodicalId":145187,"journal":{"name":"Paris December 2011 Finance Meeting EUROFIDAI - AFFI (Archive)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recovering Nonlinear Dynamics from Option Prices\",\"authors\":\"Raul Gonzalez, O. Scaillet, Alexandre Engulatov\",\"doi\":\"10.2139/ssrn.1944051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the wavelet-Galerkin method for solving partial integro-differential equations, we derive an implement computationally efficient formula for pricing European options on assets driven by multivariate jump-diffusions. This pricing formula is then used to solve the inverse problem of estimating the corresponding risk-neutral coefficient functions of the underlying jump-diffusions from observed option data. The ill-posedness of this estimation problem is proved, and a consistent estimation technique employing Tikhonov regularization is proposed. Using S&P 500 Index option data, it is shown that the coefficient functions in a stochastic volatility model with jumps are nonlinear, contrary to the affine specification widely used in the literature.\",\"PeriodicalId\":145187,\"journal\":{\"name\":\"Paris December 2011 Finance Meeting EUROFIDAI - AFFI (Archive)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paris December 2011 Finance Meeting EUROFIDAI - AFFI (Archive)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1944051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paris December 2011 Finance Meeting EUROFIDAI - AFFI (Archive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1944051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用求解偏积分微分方程的小波伽辽金方法,推导了多元跳跃扩散驱动下欧式期权定价的计算效率公式。然后利用该定价公式解决了从观测到的期权数据中估计潜在跳跃扩散的相应风险中性系数函数的反问题。证明了该估计问题的病态性,并提出了一种采用吉洪诺夫正则化的一致性估计技术。以标普500指数期权数据为例,证明了具有跳变的随机波动率模型的系数函数是非线性的,这与文献中广泛使用的仿射规范相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recovering Nonlinear Dynamics from Option Prices
Using the wavelet-Galerkin method for solving partial integro-differential equations, we derive an implement computationally efficient formula for pricing European options on assets driven by multivariate jump-diffusions. This pricing formula is then used to solve the inverse problem of estimating the corresponding risk-neutral coefficient functions of the underlying jump-diffusions from observed option data. The ill-posedness of this estimation problem is proved, and a consistent estimation technique employing Tikhonov regularization is proposed. Using S&P 500 Index option data, it is shown that the coefficient functions in a stochastic volatility model with jumps are nonlinear, contrary to the affine specification widely used in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信