{"title":"基于原子薄mos2沟道晶体管的大自整流比超快快闪存储器","authors":"Liwei Liu, Yibo Sun, Xiaohe Huang, Chunsen Liu, Zhaowu Tang, Senfeng Zeng, David-Wei Zhang, S. Deng, Peng Zhou","doi":"10.1088/2752-5724/ac7067","DOIUrl":null,"url":null,"abstract":"\n Flash memory with high operation speed and stable retention performance is in great demand to meet the requirements of big data. In addition, the realisation of ultrafast flash memory with novel functions offers a means of combining heterogeneous components into a homogeneous device without considering impedance matching. This report proposes a 20 ns programme flash memory with 108 self-rectifying ratios based on a 0.65-nm-thick MoS2-channel transistor. A high-quality van der Waals heterojunction with a sharp interface is formed between the Cr/Au metal floating layer and h-BN tunnelling layer. In addition, the large rectification ratio and low ideality factor (n = 1.13) facilitate the application of the MoS2-channel flash memory as a bit-line select transistor. Finally, owing to the ultralow MoS2/h-BN heterojunction capacitance (50 fF), the memory device exhibits superior performance as a high-frequency (up to 1 MHz) sine signal rectifier. These results pave the way toward the potential utilisation of multifunctional memory devices in ultrafast two-dimensional NAND-flash applications.","PeriodicalId":221966,"journal":{"name":"Materials Futures","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Ultrafast Flash Memory with Large Self-Rectifying Ratio Based on Atomically Thin MoS2-Channel Transistor\",\"authors\":\"Liwei Liu, Yibo Sun, Xiaohe Huang, Chunsen Liu, Zhaowu Tang, Senfeng Zeng, David-Wei Zhang, S. Deng, Peng Zhou\",\"doi\":\"10.1088/2752-5724/ac7067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Flash memory with high operation speed and stable retention performance is in great demand to meet the requirements of big data. In addition, the realisation of ultrafast flash memory with novel functions offers a means of combining heterogeneous components into a homogeneous device without considering impedance matching. This report proposes a 20 ns programme flash memory with 108 self-rectifying ratios based on a 0.65-nm-thick MoS2-channel transistor. A high-quality van der Waals heterojunction with a sharp interface is formed between the Cr/Au metal floating layer and h-BN tunnelling layer. In addition, the large rectification ratio and low ideality factor (n = 1.13) facilitate the application of the MoS2-channel flash memory as a bit-line select transistor. Finally, owing to the ultralow MoS2/h-BN heterojunction capacitance (50 fF), the memory device exhibits superior performance as a high-frequency (up to 1 MHz) sine signal rectifier. These results pave the way toward the potential utilisation of multifunctional memory devices in ultrafast two-dimensional NAND-flash applications.\",\"PeriodicalId\":221966,\"journal\":{\"name\":\"Materials Futures\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Futures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2752-5724/ac7067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Futures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5724/ac7067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultrafast Flash Memory with Large Self-Rectifying Ratio Based on Atomically Thin MoS2-Channel Transistor
Flash memory with high operation speed and stable retention performance is in great demand to meet the requirements of big data. In addition, the realisation of ultrafast flash memory with novel functions offers a means of combining heterogeneous components into a homogeneous device without considering impedance matching. This report proposes a 20 ns programme flash memory with 108 self-rectifying ratios based on a 0.65-nm-thick MoS2-channel transistor. A high-quality van der Waals heterojunction with a sharp interface is formed between the Cr/Au metal floating layer and h-BN tunnelling layer. In addition, the large rectification ratio and low ideality factor (n = 1.13) facilitate the application of the MoS2-channel flash memory as a bit-line select transistor. Finally, owing to the ultralow MoS2/h-BN heterojunction capacitance (50 fF), the memory device exhibits superior performance as a high-frequency (up to 1 MHz) sine signal rectifier. These results pave the way toward the potential utilisation of multifunctional memory devices in ultrafast two-dimensional NAND-flash applications.