立体粒子阴影测速

Jeff R. Harris, M. Mcphail, Christine Truong, A. Fontaine
{"title":"立体粒子阴影测速","authors":"Jeff R. Harris, M. Mcphail, Christine Truong, A. Fontaine","doi":"10.1115/IMECE2018-88013","DOIUrl":null,"url":null,"abstract":"Stereoscopic particle image velocimetry (SPIV) is a variant of particle image velocimetry (PIV) that allows for the measurement of three components of velocity along a plane in a flow field. In PIV, particles in the flow field are tracked by reflecting laser light from tracer particles into two angled cameras, allowing for the velocity field to be determined. Particle shadow velocimetry (PSV) is an inherently less expensive velocity measurement method since the method images shadows cast by particles from an LED backlight instead of scattered light from a laser. Previous studies have shown that PSV is an adequate substitute for PIV for many two-dimensional, two-component velocimetry measurements. In this work, the viability of the two-dimensional, three-component stereoscopic particle shadow velocimetry (SPSV) is demonstrated by using SPSV to examine a simple jet flow. Results obtained using SPIV are also used to provide benchmark comparison for SPSV measurements. Results show that in-plane and out-of-plane velocities measured using SPSV are comparable to those measured using SPIV.","PeriodicalId":229616,"journal":{"name":"Volume 7: Fluids Engineering","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereoscopic Particle Shadow Velocimetry\",\"authors\":\"Jeff R. Harris, M. Mcphail, Christine Truong, A. Fontaine\",\"doi\":\"10.1115/IMECE2018-88013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stereoscopic particle image velocimetry (SPIV) is a variant of particle image velocimetry (PIV) that allows for the measurement of three components of velocity along a plane in a flow field. In PIV, particles in the flow field are tracked by reflecting laser light from tracer particles into two angled cameras, allowing for the velocity field to be determined. Particle shadow velocimetry (PSV) is an inherently less expensive velocity measurement method since the method images shadows cast by particles from an LED backlight instead of scattered light from a laser. Previous studies have shown that PSV is an adequate substitute for PIV for many two-dimensional, two-component velocimetry measurements. In this work, the viability of the two-dimensional, three-component stereoscopic particle shadow velocimetry (SPSV) is demonstrated by using SPSV to examine a simple jet flow. Results obtained using SPIV are also used to provide benchmark comparison for SPSV measurements. Results show that in-plane and out-of-plane velocities measured using SPSV are comparable to those measured using SPIV.\",\"PeriodicalId\":229616,\"journal\":{\"name\":\"Volume 7: Fluids Engineering\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-88013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-88013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

立体粒子图像测速(SPIV)是粒子图像测速(PIV)的一种变体,它允许在流场中沿平面测量速度的三个分量。在PIV中,通过将来自示踪粒子的激光反射到两个角度摄像机中来跟踪流场中的粒子,从而确定速度场。粒子阴影测速(PSV)是一种成本较低的速度测量方法,因为该方法是通过LED背光而不是激光散射光来成像粒子投射的阴影。先前的研究表明,对于许多二维双分量测速测量,PSV是PIV的适当替代品。在这项工作中,通过使用SPSV来检测简单的射流,证明了二维三分量立体粒子阴影测速(SPSV)的可行性。使用SPIV获得的结果也用于为SPSV测量提供基准比较。结果表明,SPSV测量的面内和面外速度与SPIV测量的速度相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stereoscopic Particle Shadow Velocimetry
Stereoscopic particle image velocimetry (SPIV) is a variant of particle image velocimetry (PIV) that allows for the measurement of three components of velocity along a plane in a flow field. In PIV, particles in the flow field are tracked by reflecting laser light from tracer particles into two angled cameras, allowing for the velocity field to be determined. Particle shadow velocimetry (PSV) is an inherently less expensive velocity measurement method since the method images shadows cast by particles from an LED backlight instead of scattered light from a laser. Previous studies have shown that PSV is an adequate substitute for PIV for many two-dimensional, two-component velocimetry measurements. In this work, the viability of the two-dimensional, three-component stereoscopic particle shadow velocimetry (SPSV) is demonstrated by using SPSV to examine a simple jet flow. Results obtained using SPIV are also used to provide benchmark comparison for SPSV measurements. Results show that in-plane and out-of-plane velocities measured using SPSV are comparable to those measured using SPIV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信