一种新的鲁棒图像哈希内容认证方法

Cuiling Jiang, Yilin Pang, Anwen Wu
{"title":"一种新的鲁棒图像哈希内容认证方法","authors":"Cuiling Jiang, Yilin Pang, Anwen Wu","doi":"10.1109/SocialSec2015.15","DOIUrl":null,"url":null,"abstract":"Image hash functions find extensive application in content authentication, database search, and digital forensic. This paper develops a novel robust image-hashing method based on genetic algorithm (GA) and Back Propagation (BP) Neural Network for content authentication. Lifting wavelet transform is used to extract image low frequency coefficients to create the image feature matrix. A GA-BP network model is constructed to generate image-hashing code. Experimental results demonstrate that the proposed hashing method is robust against random attack, JPEG compression, additive Gaussian noise, and so on. Receiver operating characteristics (ROC) analysis over a large image database reveals that the proposed method significantly outperforms other approaches for robust image hashing.","PeriodicalId":121098,"journal":{"name":"2015 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Novel Robust Image-Hashing Method for Content Authentication\",\"authors\":\"Cuiling Jiang, Yilin Pang, Anwen Wu\",\"doi\":\"10.1109/SocialSec2015.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image hash functions find extensive application in content authentication, database search, and digital forensic. This paper develops a novel robust image-hashing method based on genetic algorithm (GA) and Back Propagation (BP) Neural Network for content authentication. Lifting wavelet transform is used to extract image low frequency coefficients to create the image feature matrix. A GA-BP network model is constructed to generate image-hashing code. Experimental results demonstrate that the proposed hashing method is robust against random attack, JPEG compression, additive Gaussian noise, and so on. Receiver operating characteristics (ROC) analysis over a large image database reveals that the proposed method significantly outperforms other approaches for robust image hashing.\",\"PeriodicalId\":121098,\"journal\":{\"name\":\"2015 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialSec2015.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Security and Privacy in Social Networks and Big Data (SocialSec)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialSec2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像哈希函数在内容认证、数据库搜索和数字取证等方面有着广泛的应用。提出了一种基于遗传算法(GA)和BP神经网络的鲁棒图像哈希认证方法。采用提升小波变换提取图像低频系数,生成图像特征矩阵。构造了GA-BP网络模型来生成图像哈希码。实验结果表明,该方法对随机攻击、JPEG压缩、加性高斯噪声等具有较强的鲁棒性。在大型图像数据库上的接收者工作特征(ROC)分析表明,该方法明显优于其他鲁棒图像哈希方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Robust Image-Hashing Method for Content Authentication
Image hash functions find extensive application in content authentication, database search, and digital forensic. This paper develops a novel robust image-hashing method based on genetic algorithm (GA) and Back Propagation (BP) Neural Network for content authentication. Lifting wavelet transform is used to extract image low frequency coefficients to create the image feature matrix. A GA-BP network model is constructed to generate image-hashing code. Experimental results demonstrate that the proposed hashing method is robust against random attack, JPEG compression, additive Gaussian noise, and so on. Receiver operating characteristics (ROC) analysis over a large image database reveals that the proposed method significantly outperforms other approaches for robust image hashing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信