50GHz以下场效应管小信号建模的神经方法研究

Z. Marinković, G. Crupi, A. Caddemi, V. Markovic
{"title":"50GHz以下场效应管小信号建模的神经方法研究","authors":"Z. Marinković, G. Crupi, A. Caddemi, V. Markovic","doi":"10.1109/NEUREL.2010.5644101","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to discuss and compare two neural approaches applied in small-signal modelling of microwave FETs. One of them is completely based on artificial neural networks, while the other is a hybrid model putting together artificial neural networks and an equivalent circuit representation of a microwave transistor. Devices with different gate width are considered in this paper. Different modelling aspects are compared, with special emphasis on the model development procedure and model accuracy.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On the neural approach for FET small-signal modelling up to 50GHz\",\"authors\":\"Z. Marinković, G. Crupi, A. Caddemi, V. Markovic\",\"doi\":\"10.1109/NEUREL.2010.5644101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to discuss and compare two neural approaches applied in small-signal modelling of microwave FETs. One of them is completely based on artificial neural networks, while the other is a hybrid model putting together artificial neural networks and an equivalent circuit representation of a microwave transistor. Devices with different gate width are considered in this paper. Different modelling aspects are compared, with special emphasis on the model development procedure and model accuracy.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文的目的是讨论和比较两种应用于微波场效应管小信号建模的神经方法。其中一种完全基于人工神经网络,而另一种是将人工神经网络和微波晶体管等效电路表示组合在一起的混合模型。本文考虑了不同栅极宽度的器件。比较了不同的建模方面,特别强调了模型开发过程和模型精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the neural approach for FET small-signal modelling up to 50GHz
The aim of this paper is to discuss and compare two neural approaches applied in small-signal modelling of microwave FETs. One of them is completely based on artificial neural networks, while the other is a hybrid model putting together artificial neural networks and an equivalent circuit representation of a microwave transistor. Devices with different gate width are considered in this paper. Different modelling aspects are compared, with special emphasis on the model development procedure and model accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信