Y. Wu, Guangcai Sun, Jun Yang, Jianlai Chen, M. Xing
{"title":"一种新的GEO SAR波束方向确定方法","authors":"Y. Wu, Guangcai Sun, Jun Yang, Jianlai Chen, M. Xing","doi":"10.1109/IGARSS.2014.6946514","DOIUrl":null,"url":null,"abstract":"Due to the effects of the earth's rotation and the satellite's elliptical orbit, the Doppler centroid varies along the orbit in geosynchronous earth orbit synthetic aperture radar (GEO SAR). With an ultrahigh orbit height, the beam may illuminate outside the earth surface with a rotation angle large than 9 degrees. Therefore, the usual attitude steering methods to minimize the Doppler centroid in low earth orbit SAR (LEO SAR) may not be suitable for GEO SAR. Considering the above two effects of GEO SAR and the beam illuminating restriction, a beam determination method to minimize Doppler centroid in GEO SAR is proposed in this paper. Guaranteeing that the beam not illuminate outside the earth surface, the proposed method can drastically decrease the Doppler centroid and the equivalent squint angle.","PeriodicalId":385645,"journal":{"name":"2014 IEEE Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel beam direction determination method for minimizing Doppler centroid in GEO SAR\",\"authors\":\"Y. Wu, Guangcai Sun, Jun Yang, Jianlai Chen, M. Xing\",\"doi\":\"10.1109/IGARSS.2014.6946514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the effects of the earth's rotation and the satellite's elliptical orbit, the Doppler centroid varies along the orbit in geosynchronous earth orbit synthetic aperture radar (GEO SAR). With an ultrahigh orbit height, the beam may illuminate outside the earth surface with a rotation angle large than 9 degrees. Therefore, the usual attitude steering methods to minimize the Doppler centroid in low earth orbit SAR (LEO SAR) may not be suitable for GEO SAR. Considering the above two effects of GEO SAR and the beam illuminating restriction, a beam determination method to minimize Doppler centroid in GEO SAR is proposed in this paper. Guaranteeing that the beam not illuminate outside the earth surface, the proposed method can drastically decrease the Doppler centroid and the equivalent squint angle.\",\"PeriodicalId\":385645,\"journal\":{\"name\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2014.6946514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2014.6946514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel beam direction determination method for minimizing Doppler centroid in GEO SAR
Due to the effects of the earth's rotation and the satellite's elliptical orbit, the Doppler centroid varies along the orbit in geosynchronous earth orbit synthetic aperture radar (GEO SAR). With an ultrahigh orbit height, the beam may illuminate outside the earth surface with a rotation angle large than 9 degrees. Therefore, the usual attitude steering methods to minimize the Doppler centroid in low earth orbit SAR (LEO SAR) may not be suitable for GEO SAR. Considering the above two effects of GEO SAR and the beam illuminating restriction, a beam determination method to minimize Doppler centroid in GEO SAR is proposed in this paper. Guaranteeing that the beam not illuminate outside the earth surface, the proposed method can drastically decrease the Doppler centroid and the equivalent squint angle.