声学传播中的双神经网络模型

D. C. Chin, A. Biondo
{"title":"声学传播中的双神经网络模型","authors":"D. C. Chin, A. Biondo","doi":"10.1109/SIMSYM.2000.844932","DOIUrl":null,"url":null,"abstract":"This paper presents multiple neural-network models to mimic a nonlinear dynamic system. The multiple neural network models consist of one or more simplified time-varying functions to dynamically approximate the nature of the physical phenomena to be interpolated and extrapolated. The purpose of using the multi-model function is to perform a real-time approximation for a complicated nonlinear system. The multi-model function was demonstrated using the underwater acoustic transmission loss data generated from the Navy-standard acoustic propagation-loss model ASTRAL. The interpolator-learning period for a 200 ft receiver interval, an 800 ft source interval, an 8000 Hz frequency range, and a 25 nautical time range window takes about 20 minutes (more or less time depends on the size of the parameter intervals and the complexity of the ocean environment). The interpolation speed is measured in fractions of a second, and the interpolation error is around 1% of the actual transmission-loss value in a root-mean-square (RMS) sense.","PeriodicalId":361153,"journal":{"name":"Proceedings 33rd Annual Simulation Symposium (SS 2000)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual neural network models in acoustic propagation\",\"authors\":\"D. C. Chin, A. Biondo\",\"doi\":\"10.1109/SIMSYM.2000.844932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents multiple neural-network models to mimic a nonlinear dynamic system. The multiple neural network models consist of one or more simplified time-varying functions to dynamically approximate the nature of the physical phenomena to be interpolated and extrapolated. The purpose of using the multi-model function is to perform a real-time approximation for a complicated nonlinear system. The multi-model function was demonstrated using the underwater acoustic transmission loss data generated from the Navy-standard acoustic propagation-loss model ASTRAL. The interpolator-learning period for a 200 ft receiver interval, an 800 ft source interval, an 8000 Hz frequency range, and a 25 nautical time range window takes about 20 minutes (more or less time depends on the size of the parameter intervals and the complexity of the ocean environment). The interpolation speed is measured in fractions of a second, and the interpolation error is around 1% of the actual transmission-loss value in a root-mean-square (RMS) sense.\",\"PeriodicalId\":361153,\"journal\":{\"name\":\"Proceedings 33rd Annual Simulation Symposium (SS 2000)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 33rd Annual Simulation Symposium (SS 2000)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIMSYM.2000.844932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 33rd Annual Simulation Symposium (SS 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIMSYM.2000.844932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了多种神经网络模型来模拟非线性动态系统。多神经网络模型由一个或多个简化的时变函数组成,以动态地近似待内插和外推的物理现象的性质。使用多模型函数的目的是对复杂的非线性系统进行实时逼近。利用海军标准声传播损耗模型ASTRAL生成的水声传输损耗数据,演示了多模型功能。对于200英尺的接收间隔、800英尺的源间隔、8000赫兹的频率范围和25个航海时间范围窗口,插值器的学习周期大约需要20分钟(时间长短取决于参数间隔的大小和海洋环境的复杂性)。插补速度以几分之一秒为单位测量,插补误差在均方根(RMS)意义上约为实际传输损耗值的1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual neural network models in acoustic propagation
This paper presents multiple neural-network models to mimic a nonlinear dynamic system. The multiple neural network models consist of one or more simplified time-varying functions to dynamically approximate the nature of the physical phenomena to be interpolated and extrapolated. The purpose of using the multi-model function is to perform a real-time approximation for a complicated nonlinear system. The multi-model function was demonstrated using the underwater acoustic transmission loss data generated from the Navy-standard acoustic propagation-loss model ASTRAL. The interpolator-learning period for a 200 ft receiver interval, an 800 ft source interval, an 8000 Hz frequency range, and a 25 nautical time range window takes about 20 minutes (more or less time depends on the size of the parameter intervals and the complexity of the ocean environment). The interpolation speed is measured in fractions of a second, and the interpolation error is around 1% of the actual transmission-loss value in a root-mean-square (RMS) sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信