压缩感知在Huffman编码DWT SVD医学图像水印中的应用

Irvan Ragil Boesandi, Irma Safitri, E. Suhartono
{"title":"压缩感知在Huffman编码DWT SVD医学图像水印中的应用","authors":"Irvan Ragil Boesandi, Irma Safitri, E. Suhartono","doi":"10.1109/ICCEREC.2018.8712085","DOIUrl":null,"url":null,"abstract":"In this study, we propose Huffman coding and compressive sensing (CS) for medical image watermarking. The methods used are Huffman coding, CS, discrete wavelet transform (DWT) and singular value decomposition (SVD). Experiment results show that images can be compressed generally above 50% and are lossless at the time of decompression by having the SSIM value of 1. Our system have the best MSE value of 0.23 and the best PSNR value of 56.5 dB.","PeriodicalId":250054,"journal":{"name":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compressive Sensing in the Huffman Coding DWT SVD Medical Image Watermarking\",\"authors\":\"Irvan Ragil Boesandi, Irma Safitri, E. Suhartono\",\"doi\":\"10.1109/ICCEREC.2018.8712085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose Huffman coding and compressive sensing (CS) for medical image watermarking. The methods used are Huffman coding, CS, discrete wavelet transform (DWT) and singular value decomposition (SVD). Experiment results show that images can be compressed generally above 50% and are lossless at the time of decompression by having the SSIM value of 1. Our system have the best MSE value of 0.23 and the best PSNR value of 56.5 dB.\",\"PeriodicalId\":250054,\"journal\":{\"name\":\"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEREC.2018.8712085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2018.8712085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,我们提出了霍夫曼编码和压缩感知(CS)的医学图像水印。使用的方法有霍夫曼编码、CS、离散小波变换和奇异值分解。实验结果表明,当SSIM值为1时,图像一般可以压缩50%以上,并且在解压缩时是无损的。系统的最佳MSE值为0.23,最佳PSNR值为56.5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive Sensing in the Huffman Coding DWT SVD Medical Image Watermarking
In this study, we propose Huffman coding and compressive sensing (CS) for medical image watermarking. The methods used are Huffman coding, CS, discrete wavelet transform (DWT) and singular value decomposition (SVD). Experiment results show that images can be compressed generally above 50% and are lossless at the time of decompression by having the SSIM value of 1. Our system have the best MSE value of 0.23 and the best PSNR value of 56.5 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信