基于双基地雷达和传感器的多传感器融合鲁棒导航

Y. Madany, H. Elkamchouchi, Mostafa M. Ahmed
{"title":"基于双基地雷达和传感器的多传感器融合鲁棒导航","authors":"Y. Madany, H. Elkamchouchi, Mostafa M. Ahmed","doi":"10.1109/RADAR.2014.6875675","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) have become one of the most popular and promising means for both military and civilian posts and academic research areas. Localization of the UAVs and persistent tracking of a UAV have vital importance to provide a UAV with navigation information and help to cope with getting lost permanently. Indeed, inertial navigation system (INS) and global positioning system (GPS) seem to be adequate for navigation of UAVs. However, an alternative augmented navigation system for UAVs should be taken into consideration since INS has accumulated errors and GPS always has the possibility of jamming and satellite signal loss. Unmanned air systems (UASs) are playing increasingly prominent roles in defense programs and strategy around the world. For many of applications to develop into maturity, the reliability of UASs will need to increase, their capabilities will need to be extended further, their ease of use will need to be improved, and their cost will have to come down. In this paper the fusion between the data derived from the magnetometer, rate-gyro, accelerometer, pitot tube, pressure and the GPS is integrated in one system using an extended kalman filter (EKF) which uses a linear error model to estimate the errors in the states for UAV to enhance its performances. The proposed system introduces a robust navigation based on bistatic radar and bi-sensor for UAVs flight dynamics with decreases the faults in operational environment.","PeriodicalId":127690,"journal":{"name":"2014 IEEE Radar Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust navigation based on bistatic radar and BiSensors for unmanned air systems (UASs) using integration of multiple sensors fusion architecture\",\"authors\":\"Y. Madany, H. Elkamchouchi, Mostafa M. Ahmed\",\"doi\":\"10.1109/RADAR.2014.6875675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) have become one of the most popular and promising means for both military and civilian posts and academic research areas. Localization of the UAVs and persistent tracking of a UAV have vital importance to provide a UAV with navigation information and help to cope with getting lost permanently. Indeed, inertial navigation system (INS) and global positioning system (GPS) seem to be adequate for navigation of UAVs. However, an alternative augmented navigation system for UAVs should be taken into consideration since INS has accumulated errors and GPS always has the possibility of jamming and satellite signal loss. Unmanned air systems (UASs) are playing increasingly prominent roles in defense programs and strategy around the world. For many of applications to develop into maturity, the reliability of UASs will need to increase, their capabilities will need to be extended further, their ease of use will need to be improved, and their cost will have to come down. In this paper the fusion between the data derived from the magnetometer, rate-gyro, accelerometer, pitot tube, pressure and the GPS is integrated in one system using an extended kalman filter (EKF) which uses a linear error model to estimate the errors in the states for UAV to enhance its performances. The proposed system introduces a robust navigation based on bistatic radar and bi-sensor for UAVs flight dynamics with decreases the faults in operational environment.\",\"PeriodicalId\":127690,\"journal\":{\"name\":\"2014 IEEE Radar Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2014.6875675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.6875675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无人驾驶飞行器(uav)已成为军事、民用岗位和学术研究领域最受欢迎和最有前途的手段之一。无人机的定位和持续跟踪对于为无人机提供导航信息和帮助应对永久迷路至关重要。实际上,惯性导航系统(INS)和全球定位系统(GPS)似乎足以用于无人机的导航。然而,由于惯性导航系统存在累积误差,而GPS系统存在干扰和卫星信号丢失的可能性,因此需要考虑一种替代的无人机增强导航系统。无人驾驶航空系统(UASs)在世界各地的国防计划和战略中发挥着越来越突出的作用。为了使许多应用程序发展成熟,UASs的可靠性需要提高,其功能需要进一步扩展,其易用性需要改进,其成本必须降低。本文采用扩展卡尔曼滤波(EKF)将磁强计、速率陀螺仪、加速度计、皮托管、压力和GPS数据融合到一个系统中,采用线性误差模型估计无人机的状态误差,以提高无人机的性能。该系统引入了一种基于双基地雷达和双传感器的无人机飞行动力学鲁棒导航,减少了作战环境中的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust navigation based on bistatic radar and BiSensors for unmanned air systems (UASs) using integration of multiple sensors fusion architecture
Unmanned aerial vehicles (UAVs) have become one of the most popular and promising means for both military and civilian posts and academic research areas. Localization of the UAVs and persistent tracking of a UAV have vital importance to provide a UAV with navigation information and help to cope with getting lost permanently. Indeed, inertial navigation system (INS) and global positioning system (GPS) seem to be adequate for navigation of UAVs. However, an alternative augmented navigation system for UAVs should be taken into consideration since INS has accumulated errors and GPS always has the possibility of jamming and satellite signal loss. Unmanned air systems (UASs) are playing increasingly prominent roles in defense programs and strategy around the world. For many of applications to develop into maturity, the reliability of UASs will need to increase, their capabilities will need to be extended further, their ease of use will need to be improved, and their cost will have to come down. In this paper the fusion between the data derived from the magnetometer, rate-gyro, accelerometer, pitot tube, pressure and the GPS is integrated in one system using an extended kalman filter (EKF) which uses a linear error model to estimate the errors in the states for UAV to enhance its performances. The proposed system introduces a robust navigation based on bistatic radar and bi-sensor for UAVs flight dynamics with decreases the faults in operational environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信