恶意软件分析中机器学习算法的比较研究

Krithik Gopinath, Mayaluri Tejaswi, Hritesh J, Thirumagal E
{"title":"恶意软件分析中机器学习算法的比较研究","authors":"Krithik Gopinath, Mayaluri Tejaswi, Hritesh J, Thirumagal E","doi":"10.1109/ICAAIC56838.2023.10141134","DOIUrl":null,"url":null,"abstract":"Comparing various machine learning algorithms on malware analysis is the process of evaluating the performance of different algorithms by using a dataset of labeled malware samples. The process includes training multiple models using algorithms such as XG-Boost, Random Forest, Naive Bayes, and k-NN and comparing their performance using various metrics like precision-recall, accuracy, and F1-score. The best algorithm for a given problem will rely upon the characteristics of the dataset and the requirements of the application. This process can help to develop an algorithm suitable for a specific problem and dataset to optimize the overall performance of the malware detection system.","PeriodicalId":267906,"journal":{"name":"2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Machine Learning Algorithms for Malware Analysis\",\"authors\":\"Krithik Gopinath, Mayaluri Tejaswi, Hritesh J, Thirumagal E\",\"doi\":\"10.1109/ICAAIC56838.2023.10141134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparing various machine learning algorithms on malware analysis is the process of evaluating the performance of different algorithms by using a dataset of labeled malware samples. The process includes training multiple models using algorithms such as XG-Boost, Random Forest, Naive Bayes, and k-NN and comparing their performance using various metrics like precision-recall, accuracy, and F1-score. The best algorithm for a given problem will rely upon the characteristics of the dataset and the requirements of the application. This process can help to develop an algorithm suitable for a specific problem and dataset to optimize the overall performance of the malware detection system.\",\"PeriodicalId\":267906,\"journal\":{\"name\":\"2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC)\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAAIC56838.2023.10141134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAAIC56838.2023.10141134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在恶意软件分析中比较各种机器学习算法是通过使用标记的恶意软件样本数据集来评估不同算法性能的过程。这个过程包括使用XG-Boost、随机森林、朴素贝叶斯和k-NN等算法训练多个模型,并使用各种指标(如精确召回率、准确性和f1分数)比较它们的性能。给定问题的最佳算法将依赖于数据集的特征和应用程序的要求。此过程有助于开发适合特定问题和数据集的算法,以优化恶意软件检测系统的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Machine Learning Algorithms for Malware Analysis
Comparing various machine learning algorithms on malware analysis is the process of evaluating the performance of different algorithms by using a dataset of labeled malware samples. The process includes training multiple models using algorithms such as XG-Boost, Random Forest, Naive Bayes, and k-NN and comparing their performance using various metrics like precision-recall, accuracy, and F1-score. The best algorithm for a given problem will rely upon the characteristics of the dataset and the requirements of the application. This process can help to develop an algorithm suitable for a specific problem and dataset to optimize the overall performance of the malware detection system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信