频繁模式挖掘算法的数据性能表征

Sayaka Akioka
{"title":"频繁模式挖掘算法的数据性能表征","authors":"Sayaka Akioka","doi":"10.5121/IJDKP.2015.5105","DOIUrl":null,"url":null,"abstract":"Big data quickly comes under the spotlight in recent years. As big data is supposed to handle extremely huge amount of data, it is quite natural that the demand for the computational environment to accelerates, and scales out big data applications increases. The important thing is, however, the behavior of big data applications is not clearly defined yet. Among big data applications, this paper specifically focuses on stream mining applications. The behavior of stream mining applications varies according to the characteristics of the input data. The parameters for data characterization are, however, not clearly defined yet, and there is no study investigating explicit relationships between the input data, and stream mining applications, either. Therefore, this paper picks up frequent pattern mining as one of the representative stream mining applications, and interprets the relationships between the characteristics of the input data, and behaviors of signature algorithms for frequent pattern mining.","PeriodicalId":131153,"journal":{"name":"International Journal of Data Mining & Knowledge Management Process","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data-Performance Characterization of Frequent Pattern Mining Algorithms\",\"authors\":\"Sayaka Akioka\",\"doi\":\"10.5121/IJDKP.2015.5105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data quickly comes under the spotlight in recent years. As big data is supposed to handle extremely huge amount of data, it is quite natural that the demand for the computational environment to accelerates, and scales out big data applications increases. The important thing is, however, the behavior of big data applications is not clearly defined yet. Among big data applications, this paper specifically focuses on stream mining applications. The behavior of stream mining applications varies according to the characteristics of the input data. The parameters for data characterization are, however, not clearly defined yet, and there is no study investigating explicit relationships between the input data, and stream mining applications, either. Therefore, this paper picks up frequent pattern mining as one of the representative stream mining applications, and interprets the relationships between the characteristics of the input data, and behaviors of signature algorithms for frequent pattern mining.\",\"PeriodicalId\":131153,\"journal\":{\"name\":\"International Journal of Data Mining & Knowledge Management Process\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining & Knowledge Management Process\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/IJDKP.2015.5105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining & Knowledge Management Process","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJDKP.2015.5105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,大数据迅速成为人们关注的焦点。由于大数据应该处理极其庞大的数据量,因此对计算环境的需求加速和大数据应用的扩展增加是很自然的。然而,重要的是,大数据应用程序的行为还没有明确定义。在大数据应用中,本文重点研究了流挖掘应用。流挖掘应用程序的行为根据输入数据的特征而变化。然而,数据表征的参数还没有明确定义,也没有研究调查输入数据和流挖掘应用程序之间的显式关系。因此,本文选择频繁模式挖掘作为流挖掘的代表性应用之一,并解释了频繁模式挖掘的输入数据特征与签名算法行为之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Performance Characterization of Frequent Pattern Mining Algorithms
Big data quickly comes under the spotlight in recent years. As big data is supposed to handle extremely huge amount of data, it is quite natural that the demand for the computational environment to accelerates, and scales out big data applications increases. The important thing is, however, the behavior of big data applications is not clearly defined yet. Among big data applications, this paper specifically focuses on stream mining applications. The behavior of stream mining applications varies according to the characteristics of the input data. The parameters for data characterization are, however, not clearly defined yet, and there is no study investigating explicit relationships between the input data, and stream mining applications, either. Therefore, this paper picks up frequent pattern mining as one of the representative stream mining applications, and interprets the relationships between the characteristics of the input data, and behaviors of signature algorithms for frequent pattern mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信