估算偏远地区风能资源潜力的地理空间模型

Dr. Srikanth Narasimalu, Ranjith Narasimhamurthy, A. Kannan
{"title":"估算偏远地区风能资源潜力的地理空间模型","authors":"Dr. Srikanth Narasimalu, Ranjith Narasimhamurthy, A. Kannan","doi":"10.1109/ACEPT.2018.8610708","DOIUrl":null,"url":null,"abstract":"Remote locations in developing regions are experiencing one-fifth energy per capita and heavily depend on fossil fuels. To enhance energy security, all possible renewable energy resources should be exploited. The present state of the art technology demands deployment of wind mast and lidar based infrastructure which is laborious and costly and hence demands preliminary data for justification. This paper discusses a roughness estimation from a geospatial model from which the wind profile and the wind energy density can be estimated. Further spatial and temporal variation help perform macro level techno-economic estimates to identify best wind turbine placement sites and/or wind farm design sites which can be further confirmed by micro-level wind energy site assessment such as wind mast or lidar deployment complimented with computational fluid dynamics model of the terrain.","PeriodicalId":296432,"journal":{"name":"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geospatial Model to Estimate Wind Energy Resource Potential in Remote Locations\",\"authors\":\"Dr. Srikanth Narasimalu, Ranjith Narasimhamurthy, A. Kannan\",\"doi\":\"10.1109/ACEPT.2018.8610708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote locations in developing regions are experiencing one-fifth energy per capita and heavily depend on fossil fuels. To enhance energy security, all possible renewable energy resources should be exploited. The present state of the art technology demands deployment of wind mast and lidar based infrastructure which is laborious and costly and hence demands preliminary data for justification. This paper discusses a roughness estimation from a geospatial model from which the wind profile and the wind energy density can be estimated. Further spatial and temporal variation help perform macro level techno-economic estimates to identify best wind turbine placement sites and/or wind farm design sites which can be further confirmed by micro-level wind energy site assessment such as wind mast or lidar deployment complimented with computational fluid dynamics model of the terrain.\",\"PeriodicalId\":296432,\"journal\":{\"name\":\"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACEPT.2018.8610708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEPT.2018.8610708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

发展中地区偏远地区的人均能源消耗为五分之一,严重依赖化石燃料。为了加强能源安全,应该开发所有可能的可再生能源。目前的技术水平要求部署风力桅杆和基于激光雷达的基础设施,这既费力又昂贵,因此需要初步的数据来证明。本文讨论了利用地理空间模型估算风廓线和风能密度的粗糙度。进一步的时空变化有助于进行宏观层面的技术经济评估,以确定最佳的风力涡轮机放置地点和/或风力发电场设计地点,这可以通过微观层面的风能地点评估进一步确认,如风桅杆或激光雷达部署,并辅以地形的计算流体动力学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geospatial Model to Estimate Wind Energy Resource Potential in Remote Locations
Remote locations in developing regions are experiencing one-fifth energy per capita and heavily depend on fossil fuels. To enhance energy security, all possible renewable energy resources should be exploited. The present state of the art technology demands deployment of wind mast and lidar based infrastructure which is laborious and costly and hence demands preliminary data for justification. This paper discusses a roughness estimation from a geospatial model from which the wind profile and the wind energy density can be estimated. Further spatial and temporal variation help perform macro level techno-economic estimates to identify best wind turbine placement sites and/or wind farm design sites which can be further confirmed by micro-level wind energy site assessment such as wind mast or lidar deployment complimented with computational fluid dynamics model of the terrain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信