{"title":"分布式词表示改进电子商务的NER","authors":"Mahesh Joshi, Ethan Hart, Mirko Vogel, Jean-David Ruvini","doi":"10.3115/v1/W15-1522","DOIUrl":null,"url":null,"abstract":"This paper presents a case study of using distributed word representations, word2vec in particular, for improving performance of Named Entity Recognition for the eCommerce domain. We also demonstrate that distributed word representations trained on a smaller amount of in-domain data are more effective than word vectors trained on very large amount of out-of-domain data, and that their combination gives the best results.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Distributed Word Representations Improve NER for e-Commerce\",\"authors\":\"Mahesh Joshi, Ethan Hart, Mirko Vogel, Jean-David Ruvini\",\"doi\":\"10.3115/v1/W15-1522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a case study of using distributed word representations, word2vec in particular, for improving performance of Named Entity Recognition for the eCommerce domain. We also demonstrate that distributed word representations trained on a smaller amount of in-domain data are more effective than word vectors trained on very large amount of out-of-domain data, and that their combination gives the best results.\",\"PeriodicalId\":299646,\"journal\":{\"name\":\"VS@HLT-NAACL\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VS@HLT-NAACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W15-1522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed Word Representations Improve NER for e-Commerce
This paper presents a case study of using distributed word representations, word2vec in particular, for improving performance of Named Entity Recognition for the eCommerce domain. We also demonstrate that distributed word representations trained on a smaller amount of in-domain data are more effective than word vectors trained on very large amount of out-of-domain data, and that their combination gives the best results.