{"title":"一种新的LDPC解码器硬件实现,提高了错误率","authors":"P. Schlafer, S. Scholl, E. Leonardi, N. Wehn","doi":"10.1109/AEECT.2015.7360541","DOIUrl":null,"url":null,"abstract":"LDPC codes are commonly decoded by conventional belief propagation algorithms like the min-sum algorithm. However especially for small block lengths belief propagation performs poorly in comparison to maximum likelihood decoding. In this paper we propose a new decoding algorithm, that is inspired by augmented belief propagation from literature and present hardware architectures and implementations for 28nm ASIC technology. The new decoder has a much higher complexity, but provides a gain of up to 1.2 dB signal-to-noise ratio compared to conventional belief propagation decoding.","PeriodicalId":227019,"journal":{"name":"2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new LDPC decoder hardware implementation with improved error rates\",\"authors\":\"P. Schlafer, S. Scholl, E. Leonardi, N. Wehn\",\"doi\":\"10.1109/AEECT.2015.7360541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LDPC codes are commonly decoded by conventional belief propagation algorithms like the min-sum algorithm. However especially for small block lengths belief propagation performs poorly in comparison to maximum likelihood decoding. In this paper we propose a new decoding algorithm, that is inspired by augmented belief propagation from literature and present hardware architectures and implementations for 28nm ASIC technology. The new decoder has a much higher complexity, but provides a gain of up to 1.2 dB signal-to-noise ratio compared to conventional belief propagation decoding.\",\"PeriodicalId\":227019,\"journal\":{\"name\":\"2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)\",\"volume\":\"190 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEECT.2015.7360541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEECT.2015.7360541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new LDPC decoder hardware implementation with improved error rates
LDPC codes are commonly decoded by conventional belief propagation algorithms like the min-sum algorithm. However especially for small block lengths belief propagation performs poorly in comparison to maximum likelihood decoding. In this paper we propose a new decoding algorithm, that is inspired by augmented belief propagation from literature and present hardware architectures and implementations for 28nm ASIC technology. The new decoder has a much higher complexity, but provides a gain of up to 1.2 dB signal-to-noise ratio compared to conventional belief propagation decoding.