一种高效节能的云数据中心虚拟机布局算法

Dan Liu, Xin Sui, Li Li
{"title":"一种高效节能的云数据中心虚拟机布局算法","authors":"Dan Liu, Xin Sui, Li Li","doi":"10.1109/FSKD.2016.7603263","DOIUrl":null,"url":null,"abstract":"The article puts forward an algorithm that combines Genetic Algorithm (GA) with Simulated Annealing (SA) which lower the energy consumption of the cloud data center. The energy-efficient virtual machine placement algorithm primarily accomplishes the population initialization according to the virtual machine placement rule and crossover, variation and correction. Finally, filter the new population on the basis of the metropolis rule. Experimental results show that the energy-efficient algorithm combines the advantages of GA and SA which have been improved a lot on global optimal solutions.","PeriodicalId":373155,"journal":{"name":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An energy-efficient virtual machine placement algorithm in cloud data center\",\"authors\":\"Dan Liu, Xin Sui, Li Li\",\"doi\":\"10.1109/FSKD.2016.7603263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article puts forward an algorithm that combines Genetic Algorithm (GA) with Simulated Annealing (SA) which lower the energy consumption of the cloud data center. The energy-efficient virtual machine placement algorithm primarily accomplishes the population initialization according to the virtual machine placement rule and crossover, variation and correction. Finally, filter the new population on the basis of the metropolis rule. Experimental results show that the energy-efficient algorithm combines the advantages of GA and SA which have been improved a lot on global optimal solutions.\",\"PeriodicalId\":373155,\"journal\":{\"name\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2016.7603263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2016.7603263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种将遗传算法(GA)和模拟退火(SA)相结合的算法,降低了云数据中心的能耗。节能的虚拟机布局算法主要是根据虚拟机布局规则和交叉、变异、校正完成种群初始化。最后,根据大都市规律对新增人口进行筛选。实验结果表明,该算法结合了遗传算法和蚁群算法的优点,在全局最优解上有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An energy-efficient virtual machine placement algorithm in cloud data center
The article puts forward an algorithm that combines Genetic Algorithm (GA) with Simulated Annealing (SA) which lower the energy consumption of the cloud data center. The energy-efficient virtual machine placement algorithm primarily accomplishes the population initialization according to the virtual machine placement rule and crossover, variation and correction. Finally, filter the new population on the basis of the metropolis rule. Experimental results show that the energy-efficient algorithm combines the advantages of GA and SA which have been improved a lot on global optimal solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信