基于遗传算法的负荷变压器分接整定优化在输变电系统中的应用

M.S.A. Abdul Wahab, I. Musirin, T. Rahman, M. Latip
{"title":"基于遗传算法的负荷变压器分接整定优化在输变电系统中的应用","authors":"M.S.A. Abdul Wahab, I. Musirin, T. Rahman, M. Latip","doi":"10.1109/PECON.2004.1461657","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach to the use of load flow by proposing the incorporation of the genetic algorithms (GAs) to search the optimal transformer tap setting in order to minimize the line losses. In this way, the choice of the transformer tap setting can be determined whilst minimizing losses and at the same time improved the voltage profile in the power system. The performance of this genetic algorithms technique was tested using standard IEEE 6-bus system and analysis of results is presented.","PeriodicalId":375856,"journal":{"name":"PECon 2004. Proceedings. National Power and Energy Conference, 2004.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Genetic algorithm based optimal on load transformer tap setting for loss minimization in power transmission system\",\"authors\":\"M.S.A. Abdul Wahab, I. Musirin, T. Rahman, M. Latip\",\"doi\":\"10.1109/PECON.2004.1461657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach to the use of load flow by proposing the incorporation of the genetic algorithms (GAs) to search the optimal transformer tap setting in order to minimize the line losses. In this way, the choice of the transformer tap setting can be determined whilst minimizing losses and at the same time improved the voltage profile in the power system. The performance of this genetic algorithms technique was tested using standard IEEE 6-bus system and analysis of results is presented.\",\"PeriodicalId\":375856,\"journal\":{\"name\":\"PECon 2004. Proceedings. National Power and Energy Conference, 2004.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PECon 2004. Proceedings. National Power and Energy Conference, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECON.2004.1461657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PECon 2004. Proceedings. National Power and Energy Conference, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECON.2004.1461657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种利用负荷潮流的新方法,即结合遗传算法(GAs)来搜索变压器的最佳分接整定,以使线路损耗最小化。通过这种方式,可以确定变压器分接整定的选择,同时最大限度地减少损耗,同时改善电力系统中的电压分布。在标准的IEEE 6总线系统上测试了该遗传算法的性能,并对结果进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithm based optimal on load transformer tap setting for loss minimization in power transmission system
This paper presents a new approach to the use of load flow by proposing the incorporation of the genetic algorithms (GAs) to search the optimal transformer tap setting in order to minimize the line losses. In this way, the choice of the transformer tap setting can be determined whilst minimizing losses and at the same time improved the voltage profile in the power system. The performance of this genetic algorithms technique was tested using standard IEEE 6-bus system and analysis of results is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信