扩展自编码器推荐框架及其在电影推荐中的应用

Baolin Yi, Xiaoxuan Shen, Zhaoli Zhang, Jiangbo Shu, Hai Liu
{"title":"扩展自编码器推荐框架及其在电影推荐中的应用","authors":"Baolin Yi, Xiaoxuan Shen, Zhaoli Zhang, Jiangbo Shu, Hai Liu","doi":"10.1109/SKIMA.2016.7916236","DOIUrl":null,"url":null,"abstract":"Automatic recommendation has become a popular research field: it allows the user to discover items that match their tastes. In this paper, we proposed an expanded autoencoder recommendation framework. The stacked autoencoders model is employed to extract the feature of input then reconstitution the input to do the recommendation. Then the side information of items and users is blended in the framework and the Huber function based regularization is used to improve the recommendation performance. The proposed recommendation framework is applied on the movie recommendation. Experimental results on a public database in terms of quantitative assessment show significant improvements over conventional methods.","PeriodicalId":417370,"journal":{"name":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Expanded autoencoder recommendation framework and its application in movie recommendation\",\"authors\":\"Baolin Yi, Xiaoxuan Shen, Zhaoli Zhang, Jiangbo Shu, Hai Liu\",\"doi\":\"10.1109/SKIMA.2016.7916236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic recommendation has become a popular research field: it allows the user to discover items that match their tastes. In this paper, we proposed an expanded autoencoder recommendation framework. The stacked autoencoders model is employed to extract the feature of input then reconstitution the input to do the recommendation. Then the side information of items and users is blended in the framework and the Huber function based regularization is used to improve the recommendation performance. The proposed recommendation framework is applied on the movie recommendation. Experimental results on a public database in terms of quantitative assessment show significant improvements over conventional methods.\",\"PeriodicalId\":417370,\"journal\":{\"name\":\"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKIMA.2016.7916236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA.2016.7916236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

自动推荐已经成为一个热门的研究领域:它允许用户发现符合他们口味的商品。在本文中,我们提出了一个扩展的自编码器推荐框架。采用堆叠自编码器模型提取输入特征,然后重构输入进行推荐。然后将商品和用户的侧面信息融合到框架中,利用基于Huber函数的正则化来提高推荐性能。将提出的推荐框架应用于电影推荐。在公共数据库上进行的定量评估实验结果表明,该方法比传统方法有显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expanded autoencoder recommendation framework and its application in movie recommendation
Automatic recommendation has become a popular research field: it allows the user to discover items that match their tastes. In this paper, we proposed an expanded autoencoder recommendation framework. The stacked autoencoders model is employed to extract the feature of input then reconstitution the input to do the recommendation. Then the side information of items and users is blended in the framework and the Huber function based regularization is used to improve the recommendation performance. The proposed recommendation framework is applied on the movie recommendation. Experimental results on a public database in terms of quantitative assessment show significant improvements over conventional methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信