电动汽车充电状态流的时空分析

Junghoon Lee, G. Park, Yumin Cho, Suna Kim, Jiwon Jung
{"title":"电动汽车充电状态流的时空分析","authors":"Junghoon Lee, G. Park, Yumin Cho, Suna Kim, Jiwon Jung","doi":"10.1145/2737095.2742932","DOIUrl":null,"url":null,"abstract":"This paper collects the SoC (State-of-Charge) changes of electric vehicles and analyzes the battery consumption behavior. For multiple SoC streams generated on the same road, a Hadoop Pig script filters essential information fields out of the vast amount of SoC records, while its user-defined function adds the distance and the time taken from the start point. Next, neural networks are built to trace the SoC dynamics according to both spatial and temporal aspects of SoC records using the R statistics package. A time-combined model reduces the fitting error by 50 %, compared with the distance-only model. The ongoing project keeps accumulating SoC streams and our model will investigate the effect of other parameters and correlate different streams. An accurate model for major roads taken by most trips, will lead to a more efficient estimation of battery consumption for any point-to-point routes.","PeriodicalId":318992,"journal":{"name":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Spatio-temporal analysis of state-of-charge streams for electric vehicles\",\"authors\":\"Junghoon Lee, G. Park, Yumin Cho, Suna Kim, Jiwon Jung\",\"doi\":\"10.1145/2737095.2742932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper collects the SoC (State-of-Charge) changes of electric vehicles and analyzes the battery consumption behavior. For multiple SoC streams generated on the same road, a Hadoop Pig script filters essential information fields out of the vast amount of SoC records, while its user-defined function adds the distance and the time taken from the start point. Next, neural networks are built to trace the SoC dynamics according to both spatial and temporal aspects of SoC records using the R statistics package. A time-combined model reduces the fitting error by 50 %, compared with the distance-only model. The ongoing project keeps accumulating SoC streams and our model will investigate the effect of other parameters and correlate different streams. An accurate model for major roads taken by most trips, will lead to a more efficient estimation of battery consumption for any point-to-point routes.\",\"PeriodicalId\":318992,\"journal\":{\"name\":\"Proceedings of the 14th International Conference on Information Processing in Sensor Networks\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th International Conference on Information Processing in Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2737095.2742932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th International Conference on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737095.2742932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文收集了电动汽车的SoC (State-of-Charge)变化,分析了电池的消耗行为。对于在同一条道路上生成的多个SoC流,Hadoop Pig脚本从大量的SoC记录中过滤出必要的信息字段,而其用户定义的函数则添加了从起点开始的距离和时间。接下来,利用R统计包构建神经网络,根据SoC记录的空间和时间方面跟踪SoC动态。与只考虑距离的模型相比,时间组合模型的拟合误差降低了50%。正在进行的项目不断积累SoC流,我们的模型将研究其他参数的影响并关联不同的流。对于大多数行程所经过的主要道路,一个准确的模型将导致对任何点对点路线的电池消耗进行更有效的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-temporal analysis of state-of-charge streams for electric vehicles
This paper collects the SoC (State-of-Charge) changes of electric vehicles and analyzes the battery consumption behavior. For multiple SoC streams generated on the same road, a Hadoop Pig script filters essential information fields out of the vast amount of SoC records, while its user-defined function adds the distance and the time taken from the start point. Next, neural networks are built to trace the SoC dynamics according to both spatial and temporal aspects of SoC records using the R statistics package. A time-combined model reduces the fitting error by 50 %, compared with the distance-only model. The ongoing project keeps accumulating SoC streams and our model will investigate the effect of other parameters and correlate different streams. An accurate model for major roads taken by most trips, will lead to a more efficient estimation of battery consumption for any point-to-point routes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信