具有不完全CSIT的大规模MIMO-OFDM系统中基于深度学习的分频多址

Minghui Wu, Ziwei Wan, Yang Wang, Shicong Liu, Zhen Gao
{"title":"具有不完全CSIT的大规模MIMO-OFDM系统中基于深度学习的分频多址","authors":"Minghui Wu, Ziwei Wan, Yang Wang, Shicong Liu, Zhen Gao","doi":"10.1109/ISWCS56560.2022.9940255","DOIUrl":null,"url":null,"abstract":"Due to the high dimensionality of the channel state information (CSI) in massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, acquiring accurate CSI at the transmitter (CSIT) with limited feedback overhead is difficult, severely degrading the performance of conventional SDMA beamforming techniques. To this end, this paper proposes a deep learning (DL)-based end-to-end (E2E) rate-splitting multiple access (RSMA) beam-forming scheme for massive MIMO-OFDM systems, including an analog beamforming network (ABN) and a model-driven RSMA digital beamforming network (RDBN). We adopt an E2E training approach to jointly train the proposed ABN and MRBN to obtain better beamforming performance. Numerical results show that the proposed DL-based E2E RSMA beam-forming scheme significantly improves the system capacity and outperforms the state-of-the-art schemes.","PeriodicalId":141258,"journal":{"name":"2022 International Symposium on Wireless Communication Systems (ISWCS)","volume":"60 1516 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Rate-Splitting Multiple Access for Massive MIMO-OFDM Systems With Imperfect CSIT\",\"authors\":\"Minghui Wu, Ziwei Wan, Yang Wang, Shicong Liu, Zhen Gao\",\"doi\":\"10.1109/ISWCS56560.2022.9940255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the high dimensionality of the channel state information (CSI) in massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, acquiring accurate CSI at the transmitter (CSIT) with limited feedback overhead is difficult, severely degrading the performance of conventional SDMA beamforming techniques. To this end, this paper proposes a deep learning (DL)-based end-to-end (E2E) rate-splitting multiple access (RSMA) beam-forming scheme for massive MIMO-OFDM systems, including an analog beamforming network (ABN) and a model-driven RSMA digital beamforming network (RDBN). We adopt an E2E training approach to jointly train the proposed ABN and MRBN to obtain better beamforming performance. Numerical results show that the proposed DL-based E2E RSMA beam-forming scheme significantly improves the system capacity and outperforms the state-of-the-art schemes.\",\"PeriodicalId\":141258,\"journal\":{\"name\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"60 1516 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS56560.2022.9940255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS56560.2022.9940255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大规模多输入多输出(MIMO)正交频分复用(OFDM)系统中,由于信道状态信息(CSI)的高维性,在有限的反馈开销下难以在发射机(CSIT)获取准确的CSI,严重降低了传统SDMA波束形成技术的性能。为此,本文提出了一种基于深度学习(DL)的端到端(E2E)速率分裂多址(RSMA)波束形成方案,用于大规模MIMO-OFDM系统,包括模拟波束形成网络(ABN)和模型驱动的RSMA数字波束形成网络(RDBN)。为了获得更好的波束形成性能,我们采用了E2E训练方法来联合训练ABN和MRBN。数值计算结果表明,提出的基于dl的端到端RSMA波束形成方案显著提高了系统容量,优于现有的波束形成方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Rate-Splitting Multiple Access for Massive MIMO-OFDM Systems With Imperfect CSIT
Due to the high dimensionality of the channel state information (CSI) in massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, acquiring accurate CSI at the transmitter (CSIT) with limited feedback overhead is difficult, severely degrading the performance of conventional SDMA beamforming techniques. To this end, this paper proposes a deep learning (DL)-based end-to-end (E2E) rate-splitting multiple access (RSMA) beam-forming scheme for massive MIMO-OFDM systems, including an analog beamforming network (ABN) and a model-driven RSMA digital beamforming network (RDBN). We adopt an E2E training approach to jointly train the proposed ABN and MRBN to obtain better beamforming performance. Numerical results show that the proposed DL-based E2E RSMA beam-forming scheme significantly improves the system capacity and outperforms the state-of-the-art schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信