索引不确定的时空数据

Tobias Emrich, H. Kriegel, N. Mamoulis, M. Renz, Andreas Züfle
{"title":"索引不确定的时空数据","authors":"Tobias Emrich, H. Kriegel, N. Mamoulis, M. Renz, Andreas Züfle","doi":"10.1145/2396761.2396813","DOIUrl":null,"url":null,"abstract":"The advances in sensing and telecommunication technologies allow the collection and management of vast amounts of spatio-temporal data combining location and time information.Due to physical and resource limitations of data collection devices (e.g., RFID readers, GPS receivers and other sensors) data are typically collected only at discrete points of time. In-between these discrete time instances, the positions of tracked moving objects are uncertain. In this work, we propose novel approximation techniques in order to probabilistically bound the uncertain movement of objects; these techniques allow for efficient and effective filtering during query evaluation using an hierarchical index structure.To the best of our knowledge, this is the first approach that supports query evaluation on very large uncertain spatio-temporal databases, adhering to possible worlds semantics. We experimentally show that it accelerates the existing, scan-based approach by orders of magnitude.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Indexing uncertain spatio-temporal data\",\"authors\":\"Tobias Emrich, H. Kriegel, N. Mamoulis, M. Renz, Andreas Züfle\",\"doi\":\"10.1145/2396761.2396813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advances in sensing and telecommunication technologies allow the collection and management of vast amounts of spatio-temporal data combining location and time information.Due to physical and resource limitations of data collection devices (e.g., RFID readers, GPS receivers and other sensors) data are typically collected only at discrete points of time. In-between these discrete time instances, the positions of tracked moving objects are uncertain. In this work, we propose novel approximation techniques in order to probabilistically bound the uncertain movement of objects; these techniques allow for efficient and effective filtering during query evaluation using an hierarchical index structure.To the best of our knowledge, this is the first approach that supports query evaluation on very large uncertain spatio-temporal databases, adhering to possible worlds semantics. We experimentally show that it accelerates the existing, scan-based approach by orders of magnitude.\",\"PeriodicalId\":313414,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2396761.2396813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2396813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

传感和电信技术的进步使收集和管理结合位置和时间信息的大量时空数据成为可能。由于数据收集设备(例如RFID读取器、GPS接收器和其他传感器)的物理和资源限制,通常只能在离散的时间点收集数据。在这些离散的时间实例之间,被跟踪的运动物体的位置是不确定的。在这项工作中,我们提出了新的近似技术,以便概率地约束物体的不确定运动;这些技术允许在使用分层索引结构的查询求值期间进行高效的过滤。据我们所知,这是第一种支持在非常大的不确定时空数据库上进行查询评估的方法,坚持可能世界语义。我们通过实验证明,它将现有的基于扫描的方法提高了几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indexing uncertain spatio-temporal data
The advances in sensing and telecommunication technologies allow the collection and management of vast amounts of spatio-temporal data combining location and time information.Due to physical and resource limitations of data collection devices (e.g., RFID readers, GPS receivers and other sensors) data are typically collected only at discrete points of time. In-between these discrete time instances, the positions of tracked moving objects are uncertain. In this work, we propose novel approximation techniques in order to probabilistically bound the uncertain movement of objects; these techniques allow for efficient and effective filtering during query evaluation using an hierarchical index structure.To the best of our knowledge, this is the first approach that supports query evaluation on very large uncertain spatio-temporal databases, adhering to possible worlds semantics. We experimentally show that it accelerates the existing, scan-based approach by orders of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信