VANET警报背书使用多源过滤器

T. Kim, Ahren Studer, Rituik Dubey, Xin Zhang, A. Perrig, F. Bai, B. Bellur, A. Iyer
{"title":"VANET警报背书使用多源过滤器","authors":"T. Kim, Ahren Studer, Rituik Dubey, Xin Zhang, A. Perrig, F. Bai, B. Bellur, A. Iyer","doi":"10.1145/1860058.1860067","DOIUrl":null,"url":null,"abstract":"We propose a security model for Vehicular Ad-hoc Networks (VANETs) to distinguish spurious messages from legitimate messages. In this paper, we explore the information available in a VANET environment to enable vehicles to filter out malicious messages which are transmitted by a minority of misbehaving vehicles. More specifically, we introduce a message filtering model that leverages multiple complementary sources of information to construct a multi-source detection model such that drivers are only alerted after some fraction of sources agree. Our filtering model is based on two main components: a threshold curve and a Certainty of Event (CoE) curve. A threshold curve implies the importance of an event to a driver according to the relative position, and a CoE curve represents the confidence level of the received messages. An alert is triggered when the event certainty surpasses a threshold. We analyze our model and provide some initial simulation results to demonstrate the benefits.","PeriodicalId":416154,"journal":{"name":"International Workshop on VehiculAr Inter-NETworking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"VANET alert endorsement using multi-source filters\",\"authors\":\"T. Kim, Ahren Studer, Rituik Dubey, Xin Zhang, A. Perrig, F. Bai, B. Bellur, A. Iyer\",\"doi\":\"10.1145/1860058.1860067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a security model for Vehicular Ad-hoc Networks (VANETs) to distinguish spurious messages from legitimate messages. In this paper, we explore the information available in a VANET environment to enable vehicles to filter out malicious messages which are transmitted by a minority of misbehaving vehicles. More specifically, we introduce a message filtering model that leverages multiple complementary sources of information to construct a multi-source detection model such that drivers are only alerted after some fraction of sources agree. Our filtering model is based on two main components: a threshold curve and a Certainty of Event (CoE) curve. A threshold curve implies the importance of an event to a driver according to the relative position, and a CoE curve represents the confidence level of the received messages. An alert is triggered when the event certainty surpasses a threshold. We analyze our model and provide some initial simulation results to demonstrate the benefits.\",\"PeriodicalId\":416154,\"journal\":{\"name\":\"International Workshop on VehiculAr Inter-NETworking\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on VehiculAr Inter-NETworking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1860058.1860067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on VehiculAr Inter-NETworking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1860058.1860067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

我们提出了一种车辆自组织网络(vanet)的安全模型,以区分虚假消息和合法消息。在本文中,我们探索了VANET环境中可用的信息,以使车辆能够过滤掉由少数行为不端的车辆传输的恶意消息。更具体地说,我们引入了一个消息过滤模型,该模型利用多个互补的信息源来构建一个多源检测模型,这样,只有在部分信息源一致后,司机才会收到警报。我们的过滤模型基于两个主要组件:阈值曲线和事件确定性(CoE)曲线。阈值曲线根据相对位置表示事件对驾驶员的重要性,CoE曲线表示接收到的消息的置信度。当事件确定性超过阈值时触发警报。我们分析了我们的模型,并提供了一些初步的仿真结果来证明它的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
VANET alert endorsement using multi-source filters
We propose a security model for Vehicular Ad-hoc Networks (VANETs) to distinguish spurious messages from legitimate messages. In this paper, we explore the information available in a VANET environment to enable vehicles to filter out malicious messages which are transmitted by a minority of misbehaving vehicles. More specifically, we introduce a message filtering model that leverages multiple complementary sources of information to construct a multi-source detection model such that drivers are only alerted after some fraction of sources agree. Our filtering model is based on two main components: a threshold curve and a Certainty of Event (CoE) curve. A threshold curve implies the importance of an event to a driver according to the relative position, and a CoE curve represents the confidence level of the received messages. An alert is triggered when the event certainty surpasses a threshold. We analyze our model and provide some initial simulation results to demonstrate the benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信