平面电导率包体的反问题

Doosung Choi, J. Helsing, Sangwoo Kang, Mikyoung Lim
{"title":"平面电导率包体的反问题","authors":"Doosung Choi, J. Helsing, Sangwoo Kang, Mikyoung Lim","doi":"10.1137/22m1522395","DOIUrl":null,"url":null,"abstract":"This paper concerns the inverse problem of determining a planar conductivity inclusion. Our aim is to analytically recover from the generalized polarization tensors (GPTs), which can be obtained from exterior measurements, a homogeneous inclusion with arbitrary constant conductivity. The primary outcome of recovering a homogeneous inclusion is an inversion formula in terms of the GPTs for conformal mapping coefficients associated with the inclusion. To prove the formula, we establish matrix factorizations for the GPTs.","PeriodicalId":185319,"journal":{"name":"SIAM J. Imaging Sci.","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inverse Problem for a Planar Conductivity Inclusion\",\"authors\":\"Doosung Choi, J. Helsing, Sangwoo Kang, Mikyoung Lim\",\"doi\":\"10.1137/22m1522395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the inverse problem of determining a planar conductivity inclusion. Our aim is to analytically recover from the generalized polarization tensors (GPTs), which can be obtained from exterior measurements, a homogeneous inclusion with arbitrary constant conductivity. The primary outcome of recovering a homogeneous inclusion is an inversion formula in terms of the GPTs for conformal mapping coefficients associated with the inclusion. To prove the formula, we establish matrix factorizations for the GPTs.\",\"PeriodicalId\":185319,\"journal\":{\"name\":\"SIAM J. Imaging Sci.\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Imaging Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1522395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Imaging Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1522395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了确定平面电导率包体的反问题。我们的目的是从外部测量得到的广义极化张量(GPTs)中解析恢复具有任意恒定电导率的均匀包体。恢复均匀包涵体的主要结果是根据与包涵体相关的保角映射系数的gpt的反演公式。为了证明这个公式,我们建立了gpt的矩阵分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Problem for a Planar Conductivity Inclusion
This paper concerns the inverse problem of determining a planar conductivity inclusion. Our aim is to analytically recover from the generalized polarization tensors (GPTs), which can be obtained from exterior measurements, a homogeneous inclusion with arbitrary constant conductivity. The primary outcome of recovering a homogeneous inclusion is an inversion formula in terms of the GPTs for conformal mapping coefficients associated with the inclusion. To prove the formula, we establish matrix factorizations for the GPTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信