L. A. Lastras-Montaño, M. Franceschini, T. Mittelholzer
{"title":"平均成本下均匀噪声可重写信道的容量","authors":"L. A. Lastras-Montaño, M. Franceschini, T. Mittelholzer","doi":"10.1109/ISIT.2010.5513251","DOIUrl":null,"url":null,"abstract":"We present a closed form expression for the capacity of the uniform noise rewritable channel with average write cost and a constraint on the input range. We show the existence of a critical cost κ<inf>0</inf> such that for all costs κ ≥ κ<inf>0</inf>, the capacity/cost tradeoff is given by an offset added to the logarithm of the cost. Assuming κ<inf>0</inf> > 1, for 1 ≤ κ < κ<inf>0</inf> the capacity/cost tradeoff grows faster than a logarithm.","PeriodicalId":147055,"journal":{"name":"2010 IEEE International Symposium on Information Theory","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The capacity of the uniform noise rewritable channel with average cost\",\"authors\":\"L. A. Lastras-Montaño, M. Franceschini, T. Mittelholzer\",\"doi\":\"10.1109/ISIT.2010.5513251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a closed form expression for the capacity of the uniform noise rewritable channel with average write cost and a constraint on the input range. We show the existence of a critical cost κ<inf>0</inf> such that for all costs κ ≥ κ<inf>0</inf>, the capacity/cost tradeoff is given by an offset added to the logarithm of the cost. Assuming κ<inf>0</inf> > 1, for 1 ≤ κ < κ<inf>0</inf> the capacity/cost tradeoff grows faster than a logarithm.\",\"PeriodicalId\":147055,\"journal\":{\"name\":\"2010 IEEE International Symposium on Information Theory\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2010.5513251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2010.5513251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The capacity of the uniform noise rewritable channel with average cost
We present a closed form expression for the capacity of the uniform noise rewritable channel with average write cost and a constraint on the input range. We show the existence of a critical cost κ0 such that for all costs κ ≥ κ0, the capacity/cost tradeoff is given by an offset added to the logarithm of the cost. Assuming κ0 > 1, for 1 ≤ κ < κ0 the capacity/cost tradeoff grows faster than a logarithm.