粘合证明环境:以锁为特征的LF类型理论的规范扩展

F. Honsell, L. Liquori, P. Maksimovic, Ivan Scagnetto
{"title":"粘合证明环境:以锁为特征的LF类型理论的规范扩展","authors":"F. Honsell, L. Liquori, P. Maksimovic, Ivan Scagnetto","doi":"10.4204/EPTCS.185.1","DOIUrl":null,"url":null,"abstract":"We present two extensions of the LF Constructive Type Theory featuring monadic locks. A lock is a monadic type construct that captures the effect of an external call to an oracle. Such calls are the basic tool for gluing together diverse Type Theories and proof development environments. The oracle can either be invoked in order to check that a constraint holds or to provide a suitable witness. The systems are presented in the canonical style developed by the CMU School. The first system, CLLF_P , is the canonical version of the system LLF_P , presented earlier by the authors. The second system, CLLF_P? , features the possibility of invoking the oracle to obtain a witness satisfying a given constraint. We discuss encodings of Fitch-Prawitz Set theory, call-by-value λ-calculi, and systems of Light Linear Logic. Finally, we show how to use Fitch-Prawitz Set Theory to define a type system that types precisely the strongly normalizing terms.","PeriodicalId":262518,"journal":{"name":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gluing together Proof Environments: Canonical extensions of LF Type Theories featuring Locks\",\"authors\":\"F. Honsell, L. Liquori, P. Maksimovic, Ivan Scagnetto\",\"doi\":\"10.4204/EPTCS.185.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two extensions of the LF Constructive Type Theory featuring monadic locks. A lock is a monadic type construct that captures the effect of an external call to an oracle. Such calls are the basic tool for gluing together diverse Type Theories and proof development environments. The oracle can either be invoked in order to check that a constraint holds or to provide a suitable witness. The systems are presented in the canonical style developed by the CMU School. The first system, CLLF_P , is the canonical version of the system LLF_P , presented earlier by the authors. The second system, CLLF_P? , features the possibility of invoking the oracle to obtain a witness satisfying a given constraint. We discuss encodings of Fitch-Prawitz Set theory, call-by-value λ-calculi, and systems of Light Linear Logic. Finally, we show how to use Fitch-Prawitz Set Theory to define a type system that types precisely the strongly normalizing terms.\",\"PeriodicalId\":262518,\"journal\":{\"name\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.185.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.185.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了以一元锁为特征的LF构造型理论的两个扩展。锁是一种一元类型结构,它捕获了对oracle的外部调用的效果。这样的调用是将各种类型理论和证明开发环境粘合在一起的基本工具。可以调用oracle来检查约束是否成立,也可以调用oracle来提供合适的见证。这些系统以CMU学派开发的规范风格呈现。第一个系统CLLF_P是作者前面介绍的系统LLF_P的规范版本。第二个系统CLLF_P?的特点是可以调用oracle来获得满足给定约束的证人。讨论了Fitch-Prawitz集合论的编码、按值调用λ-演算和轻线性逻辑系统。最后,我们展示了如何使用Fitch-Prawitz集合理论来定义一个类型系统,该类型系统可以精确地键入强规范化项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gluing together Proof Environments: Canonical extensions of LF Type Theories featuring Locks
We present two extensions of the LF Constructive Type Theory featuring monadic locks. A lock is a monadic type construct that captures the effect of an external call to an oracle. Such calls are the basic tool for gluing together diverse Type Theories and proof development environments. The oracle can either be invoked in order to check that a constraint holds or to provide a suitable witness. The systems are presented in the canonical style developed by the CMU School. The first system, CLLF_P , is the canonical version of the system LLF_P , presented earlier by the authors. The second system, CLLF_P? , features the possibility of invoking the oracle to obtain a witness satisfying a given constraint. We discuss encodings of Fitch-Prawitz Set theory, call-by-value λ-calculi, and systems of Light Linear Logic. Finally, we show how to use Fitch-Prawitz Set Theory to define a type system that types precisely the strongly normalizing terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信