{"title":"基于压电作动器的低机械交叉耦合二维激光扫描仪","authors":"Wei Chen, Dong Luo, Yu-Rong Liang, Peng Liu, Liangpei Chen, Yizhou Zhang","doi":"10.5220/0007360301290133","DOIUrl":null,"url":null,"abstract":"Traditional two-dimensional laser scanners usually employ two-degree-of-freedom flexible hinges. However, these flexible hinges suffer from mechanical cross coupling between axes, which will reduce the scanning accuracy and stability. To overcome the above disadvantages, a compact novel laser scanner based on piezoelectric actuators is presented. The scanner uses only three one-dimensional flexible hinges to achieve two-axis feature. The mechanical structure and principle are detailed. Then the capabilities of the scanner are tested by a performance test system. The test results show that the scanner has a tilt angle of 43.19 mrad for X-axis with resonance frequency at 149.21 Hz and 2.41 mrad for Y-axis with resonance frequency at 232.59 Hz. Its scanning nonlinearity is reduced from 3% to 0.5% for X-axis and from 6% to 1% after compensation. The test results and the actual scanning images prove the low mechanical cross","PeriodicalId":294758,"journal":{"name":"International Conference on Photonics, Optics and Laser Technology","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-dimensional Laser Scanner with Low Mechanical Cross Coupling based on Piezoelectric Actuators\",\"authors\":\"Wei Chen, Dong Luo, Yu-Rong Liang, Peng Liu, Liangpei Chen, Yizhou Zhang\",\"doi\":\"10.5220/0007360301290133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional two-dimensional laser scanners usually employ two-degree-of-freedom flexible hinges. However, these flexible hinges suffer from mechanical cross coupling between axes, which will reduce the scanning accuracy and stability. To overcome the above disadvantages, a compact novel laser scanner based on piezoelectric actuators is presented. The scanner uses only three one-dimensional flexible hinges to achieve two-axis feature. The mechanical structure and principle are detailed. Then the capabilities of the scanner are tested by a performance test system. The test results show that the scanner has a tilt angle of 43.19 mrad for X-axis with resonance frequency at 149.21 Hz and 2.41 mrad for Y-axis with resonance frequency at 232.59 Hz. Its scanning nonlinearity is reduced from 3% to 0.5% for X-axis and from 6% to 1% after compensation. The test results and the actual scanning images prove the low mechanical cross\",\"PeriodicalId\":294758,\"journal\":{\"name\":\"International Conference on Photonics, Optics and Laser Technology\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Photonics, Optics and Laser Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007360301290133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Photonics, Optics and Laser Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007360301290133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-dimensional Laser Scanner with Low Mechanical Cross Coupling based on Piezoelectric Actuators
Traditional two-dimensional laser scanners usually employ two-degree-of-freedom flexible hinges. However, these flexible hinges suffer from mechanical cross coupling between axes, which will reduce the scanning accuracy and stability. To overcome the above disadvantages, a compact novel laser scanner based on piezoelectric actuators is presented. The scanner uses only three one-dimensional flexible hinges to achieve two-axis feature. The mechanical structure and principle are detailed. Then the capabilities of the scanner are tested by a performance test system. The test results show that the scanner has a tilt angle of 43.19 mrad for X-axis with resonance frequency at 149.21 Hz and 2.41 mrad for Y-axis with resonance frequency at 232.59 Hz. Its scanning nonlinearity is reduced from 3% to 0.5% for X-axis and from 6% to 1% after compensation. The test results and the actual scanning images prove the low mechanical cross