Elly Indrayuni
{"title":"Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes","authors":"Elly Indrayuni","doi":"10.31294/JKI.V7I1.5740","DOIUrl":null,"url":null,"abstract":"Saat ini produk kosmetik sudah menjadi kebutuhan utama kaum wanita yang merupakan target utama dari industri kosmetik. Banyak website yang menyediakan informasi tentang produk kosmetik dengan memberikan banyak informasi berupa gambar dan review pengguna. Membaca semua review yang ada pada sebuah website tentu sangat memakan waktu, karena terlalu banyak opini yang ada dari berbagai sumber website yang berbeda. Oleh karena itu, analisa sentimen merupakan salah satu solusi mengatasi masalah untuk mengelompokan opini atau review menjadi opini positif atau negatif secara otomatis. Naive Bayes memiliki kelebihan yaitu sederhana, cepat dan memiliki akurasi yang tinggi. Penerapan fitur generate            n-gram pada penelitian ini diharapkan dapat meningkatkan nilai akurasi algoritma Naive Bayes. N-gram dianggap dapat mengurangi selisih antara klasifikasi kelas positif dan negatif sehingga dapat meningkatkan rata-rata akurasi akhir suatu algoritma. Hasil klasifikasi sentimen pada penelitian ini terdiri dari dua label class, yaitu positif dan negatif. Nilai akurasi yang dihasilkan akan menjadi tolak  ukur untuk mencari model pengujian terbaik untuk kasus klasifikasi sentimen. Evaluasi dilakukan menggunakan 10 fold cross validation. Pengukuran akurasi diukur dengan confusion matrix dan kurva ROC. Hasil penelitian menunjukkan penerapan generate n-gram pada tahap preprocessing mempengaruhi nilai akurasi dan nilai AUC yang dihasilkan. Nilai akurasi terbaik yang dihasilkan pada penelitian ini yaitu 90.50% dengan nilai AUC sebesar 0.715 pada penerapan generate n-gram = 2.","PeriodicalId":384112,"journal":{"name":"Jurnal Khatulistiwa Informatika","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Khatulistiwa Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31294/JKI.V7I1.5740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

今天,化妆品已经成为化妆品行业的主要目标。许多网站通过图片和用户审查提供关于化妆品的信息来提供关于化妆品的信息。阅读网站上的所有评论是很耗时的,因为来自不同网站的意见太多了。因此,情绪分析是一种解决问题的方法,可以将意见或评论分成自动的正面或负面的观点。天真的贝斯有一个优势,即简单、快速和高准确性。本研究中n克特性的应用预计将增加Naive Bayes算法的准确性值。n -g被认为可以减少正类分类和负类分类之间的差异,从而增加算法最终准确率。本研究的感情分类结果由两类标签组成,分别是正的和负的。由此产生的准确性值将是衡量情感分类案例中最好的测试模型。评估使用10折交叉验证。准确性测量是用孔子矩阵和中华民国曲线来测量的。研究结果表明,在预习阶段的n-g的应用会影响生成的准确性和AUC的值。本研究产生的最佳准确性值为90.50%,AUC值为0.715分,用于练习n-g = 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes
Saat ini produk kosmetik sudah menjadi kebutuhan utama kaum wanita yang merupakan target utama dari industri kosmetik. Banyak website yang menyediakan informasi tentang produk kosmetik dengan memberikan banyak informasi berupa gambar dan review pengguna. Membaca semua review yang ada pada sebuah website tentu sangat memakan waktu, karena terlalu banyak opini yang ada dari berbagai sumber website yang berbeda. Oleh karena itu, analisa sentimen merupakan salah satu solusi mengatasi masalah untuk mengelompokan opini atau review menjadi opini positif atau negatif secara otomatis. Naive Bayes memiliki kelebihan yaitu sederhana, cepat dan memiliki akurasi yang tinggi. Penerapan fitur generate            n-gram pada penelitian ini diharapkan dapat meningkatkan nilai akurasi algoritma Naive Bayes. N-gram dianggap dapat mengurangi selisih antara klasifikasi kelas positif dan negatif sehingga dapat meningkatkan rata-rata akurasi akhir suatu algoritma. Hasil klasifikasi sentimen pada penelitian ini terdiri dari dua label class, yaitu positif dan negatif. Nilai akurasi yang dihasilkan akan menjadi tolak  ukur untuk mencari model pengujian terbaik untuk kasus klasifikasi sentimen. Evaluasi dilakukan menggunakan 10 fold cross validation. Pengukuran akurasi diukur dengan confusion matrix dan kurva ROC. Hasil penelitian menunjukkan penerapan generate n-gram pada tahap preprocessing mempengaruhi nilai akurasi dan nilai AUC yang dihasilkan. Nilai akurasi terbaik yang dihasilkan pada penelitian ini yaitu 90.50% dengan nilai AUC sebesar 0.715 pada penerapan generate n-gram = 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信