基于自适应特征滤波器的显微镜细胞图像分割

Saravana Kumar, S. Ong, S. Ranganath, F. Chew, T. Ong
{"title":"基于自适应特征滤波器的显微镜细胞图像分割","authors":"Saravana Kumar, S. Ong, S. Ranganath, F. Chew, T. Ong","doi":"10.1109/ICIP.2004.1418708","DOIUrl":null,"url":null,"abstract":"This paper presents the use of a PCA based approach to segment cells from RGB light microscope images. The proposed segmentation is accurate and robust under uneven illumination, lighting variation, and noise. Principal component analysis (PCA) is first applied to the RGB color bands of the image. The image corresponding to the principal component has significantly better contrast over the original image. A set of eigenfilters is then obtained by applying PCA to local neighborhoods of this image. A pair of filters from this set, corresponding to the second and third largest eigenvalues, resembles ramp edge filters with orientations that adapt to the image. These edge filters are used to obtain the edgemap of the image. We define a criterion that enables accurate detection of valid edges of cells while suppressing noise.","PeriodicalId":184798,"journal":{"name":"2004 International Conference on Image Processing, 2004. ICIP '04.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Segmentation of microscope cell images via adaptive eigenfilters\",\"authors\":\"Saravana Kumar, S. Ong, S. Ranganath, F. Chew, T. Ong\",\"doi\":\"10.1109/ICIP.2004.1418708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the use of a PCA based approach to segment cells from RGB light microscope images. The proposed segmentation is accurate and robust under uneven illumination, lighting variation, and noise. Principal component analysis (PCA) is first applied to the RGB color bands of the image. The image corresponding to the principal component has significantly better contrast over the original image. A set of eigenfilters is then obtained by applying PCA to local neighborhoods of this image. A pair of filters from this set, corresponding to the second and third largest eigenvalues, resembles ramp edge filters with orientations that adapt to the image. These edge filters are used to obtain the edgemap of the image. We define a criterion that enables accurate detection of valid edges of cells while suppressing noise.\",\"PeriodicalId\":184798,\"journal\":{\"name\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Conference on Image Processing, 2004. ICIP '04.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2004.1418708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Image Processing, 2004. ICIP '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2004.1418708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文介绍了使用基于PCA的方法从RGB光学显微镜图像中分割细胞。在光照不均匀、光照变化和噪声的情况下,所提出的分割是准确和鲁棒的。首先将主成分分析(PCA)应用于图像的RGB色带。主成分对应的图像明显优于原始图像的对比度。然后通过对图像的局部邻域应用PCA得到一组特征滤波器。该集合中的一对滤波器对应于第二大和第三大特征值,类似于具有适应图像方向的斜坡边缘滤波器。这些边缘滤波器用于获得图像的边缘图。我们定义了一个标准,可以在抑制噪声的同时准确检测细胞的有效边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of microscope cell images via adaptive eigenfilters
This paper presents the use of a PCA based approach to segment cells from RGB light microscope images. The proposed segmentation is accurate and robust under uneven illumination, lighting variation, and noise. Principal component analysis (PCA) is first applied to the RGB color bands of the image. The image corresponding to the principal component has significantly better contrast over the original image. A set of eigenfilters is then obtained by applying PCA to local neighborhoods of this image. A pair of filters from this set, corresponding to the second and third largest eigenvalues, resembles ramp edge filters with orientations that adapt to the image. These edge filters are used to obtain the edgemap of the image. We define a criterion that enables accurate detection of valid edges of cells while suppressing noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信