面向面部表情识别的三维图像地标识别

C. Sindhuja, K. Mala
{"title":"面向面部表情识别的三维图像地标识别","authors":"C. Sindhuja, K. Mala","doi":"10.1109/ICCCT2.2015.7292772","DOIUrl":null,"url":null,"abstract":"Facial expression recognition plays a major role in non verbal communication. Recognition by machine is still a challenging problem. To automate the recognition for human machine interaction, a system is proposed in this paper. The proposed system uses shape descriptors to identify twelve land marks which mainly contribute to the facial expression recognition. From the location and the size or boundary of the land marks by matching with Facial Landmark Model (FLM), basic expressions are identified. The experimental results show that the shape descriptors and post processing correctly identifies landmarks automatically. The architectural distortion of action units is used to identify the basic facial expressions and tested on Bosphorous data set.","PeriodicalId":410045,"journal":{"name":"2015 International Conference on Computing and Communications Technologies (ICCCT)","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Landmark identification in 3D image for facial expression recognition\",\"authors\":\"C. Sindhuja, K. Mala\",\"doi\":\"10.1109/ICCCT2.2015.7292772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial expression recognition plays a major role in non verbal communication. Recognition by machine is still a challenging problem. To automate the recognition for human machine interaction, a system is proposed in this paper. The proposed system uses shape descriptors to identify twelve land marks which mainly contribute to the facial expression recognition. From the location and the size or boundary of the land marks by matching with Facial Landmark Model (FLM), basic expressions are identified. The experimental results show that the shape descriptors and post processing correctly identifies landmarks automatically. The architectural distortion of action units is used to identify the basic facial expressions and tested on Bosphorous data set.\",\"PeriodicalId\":410045,\"journal\":{\"name\":\"2015 International Conference on Computing and Communications Technologies (ICCCT)\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Computing and Communications Technologies (ICCCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCT2.2015.7292772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computing and Communications Technologies (ICCCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT2.2015.7292772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

面部表情识别在非语言交际中起着重要作用。机器识别仍然是一个具有挑战性的问题。为了实现人机交互的自动识别,本文提出了一个系统。该系统利用形状描述符对12个地标进行识别,主要用于面部表情识别。通过人脸地标模型(Facial Landmark Model, FLM)的匹配,从地标的位置和大小或边界来识别基本表情。实验结果表明,所提出的形状描述符和后处理方法能够正确地自动识别地标。利用动作单元的结构变形来识别基本面部表情,并在博斯普鲁斯数据集上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Landmark identification in 3D image for facial expression recognition
Facial expression recognition plays a major role in non verbal communication. Recognition by machine is still a challenging problem. To automate the recognition for human machine interaction, a system is proposed in this paper. The proposed system uses shape descriptors to identify twelve land marks which mainly contribute to the facial expression recognition. From the location and the size or boundary of the land marks by matching with Facial Landmark Model (FLM), basic expressions are identified. The experimental results show that the shape descriptors and post processing correctly identifies landmarks automatically. The architectural distortion of action units is used to identify the basic facial expressions and tested on Bosphorous data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信