基于视觉的智能车辆实时姿态估计

Mingyu Yang, Qian Yu, Hong Wang, Bo Zhang
{"title":"基于视觉的智能车辆实时姿态估计","authors":"Mingyu Yang, Qian Yu, Hong Wang, Bo Zhang","doi":"10.1109/IVS.2004.1336392","DOIUrl":null,"url":null,"abstract":"Pose estimation is one of the key issues in the research of intelligent vehicles. In this paper, a real-time pose estimation algorithm based on vision is proposed and implemented. The ground plane assumption is used to simplify the interframe motion model to a 2D plane motion model, which reduces the computation and avoids the difficulty in feature point selection in outdoor environments. This algorithm is composed of two parts: the Gradient Angle Histogram algorithm and the Iterative Gradient Closest Point algorithm. The fusion of these two algorithms successfully addresses the local minimum problem and the high computation problem with the ICP algorithm. Experimental results with both synthetic data and real data prove the high accuracy, low computation, and high robustness to outliers in this algorithm.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Vision based real-time pose estimation for intelligent vehicles\",\"authors\":\"Mingyu Yang, Qian Yu, Hong Wang, Bo Zhang\",\"doi\":\"10.1109/IVS.2004.1336392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pose estimation is one of the key issues in the research of intelligent vehicles. In this paper, a real-time pose estimation algorithm based on vision is proposed and implemented. The ground plane assumption is used to simplify the interframe motion model to a 2D plane motion model, which reduces the computation and avoids the difficulty in feature point selection in outdoor environments. This algorithm is composed of two parts: the Gradient Angle Histogram algorithm and the Iterative Gradient Closest Point algorithm. The fusion of these two algorithms successfully addresses the local minimum problem and the high computation problem with the ICP algorithm. Experimental results with both synthetic data and real data prove the high accuracy, low computation, and high robustness to outliers in this algorithm.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

姿态估计是智能车辆研究中的关键问题之一。本文提出并实现了一种基于视觉的实时姿态估计算法。利用地平面假设将帧间运动模型简化为二维平面运动模型,减少了计算量,避免了室外环境下特征点选择的困难。该算法由梯度角直方图算法和迭代梯度最近点算法两部分组成。这两种算法的融合成功地解决了局部最小值问题和ICP算法的高计算量问题。合成数据和实际数据的实验结果表明,该算法精度高,计算量小,对异常值具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision based real-time pose estimation for intelligent vehicles
Pose estimation is one of the key issues in the research of intelligent vehicles. In this paper, a real-time pose estimation algorithm based on vision is proposed and implemented. The ground plane assumption is used to simplify the interframe motion model to a 2D plane motion model, which reduces the computation and avoids the difficulty in feature point selection in outdoor environments. This algorithm is composed of two parts: the Gradient Angle Histogram algorithm and the Iterative Gradient Closest Point algorithm. The fusion of these two algorithms successfully addresses the local minimum problem and the high computation problem with the ICP algorithm. Experimental results with both synthetic data and real data prove the high accuracy, low computation, and high robustness to outliers in this algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信