基于模糊支持向量机的人体动作识别

Kan Li
{"title":"基于模糊支持向量机的人体动作识别","authors":"Kan Li","doi":"10.1109/ISCID.2012.20","DOIUrl":null,"url":null,"abstract":"As human action is uncertain and illegible, a human action recognition method basing on fuzzy support vector machine is presented. Fuzzy support vector machine employs the membership function to solve the unclassifiable areas which happens the traditional SVMs' two-class problems extend to the multi-class problems. the method is evaluated on the Weizmann action dataset and received comparative high correct recognition rate. the experimental results show that our approach has efficient recognition performance.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Human Action Recognition Based on Fuzzy Support Vector Machines\",\"authors\":\"Kan Li\",\"doi\":\"10.1109/ISCID.2012.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As human action is uncertain and illegible, a human action recognition method basing on fuzzy support vector machine is presented. Fuzzy support vector machine employs the membership function to solve the unclassifiable areas which happens the traditional SVMs' two-class problems extend to the multi-class problems. the method is evaluated on the Weizmann action dataset and received comparative high correct recognition rate. the experimental results show that our approach has efficient recognition performance.\",\"PeriodicalId\":246432,\"journal\":{\"name\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Fifth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2012.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对人体动作具有不确定性和难以辨认性的特点,提出了一种基于模糊支持向量机的人体动作识别方法。模糊支持向量机利用隶属函数来解决传统支持向量机的两类问题扩展到多类问题时出现的不可分类区域。在Weizmann动作数据集上对该方法进行了评估,获得了较高的正确识别率。实验结果表明,该方法具有较好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Human Action Recognition Based on Fuzzy Support Vector Machines
As human action is uncertain and illegible, a human action recognition method basing on fuzzy support vector machine is presented. Fuzzy support vector machine employs the membership function to solve the unclassifiable areas which happens the traditional SVMs' two-class problems extend to the multi-class problems. the method is evaluated on the Weizmann action dataset and received comparative high correct recognition rate. the experimental results show that our approach has efficient recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信