{"title":"协同虚拟环境中的流三维形状变形","authors":"Ziying Tang, Guodong Rong, X. Guo, B. Prabhakaran","doi":"10.1109/VR.2010.5444793","DOIUrl":null,"url":null,"abstract":"Collaborative virtual environment has been limited on static or rigid 3D models, due to the difficulties of real-time streaming of large amounts of data that is required to describe motions of 3D deformable models. Streaming shape deformations of complex 3D models arising from a remote user's manipulations is a challenging task. In this paper, we present a framework based on spectral transformation that encodes surface deformations in a frequency format to successfully meet the challenge, and demonstrate its use in a distributed virtual environment. Our research contributions through this framework include: i) we reduce the data size to be streamed for surface deformations since we stream only the transformed spectral coefficients and not the deformed model; ii) we propose a mapping method to allow models with multi-resolutions to have the same deformations simultaneously; iii) our streaming strategy can tolerate loss without the need for special handling of packet loss. Our system guarantees real-time transmission of shape deformations and ensures the smooth motions of 3D models. Moreover, we achieve very effective performance over real Internet conditions as well as a local LAN. Experimental results show that we get low distortion and small delays even when surface deformations of large and complicated 3D models are streamed over lossy networks.","PeriodicalId":151060,"journal":{"name":"2010 IEEE Virtual Reality Conference (VR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Streaming 3D shape deformations in collaborative virtual environment\",\"authors\":\"Ziying Tang, Guodong Rong, X. Guo, B. Prabhakaran\",\"doi\":\"10.1109/VR.2010.5444793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative virtual environment has been limited on static or rigid 3D models, due to the difficulties of real-time streaming of large amounts of data that is required to describe motions of 3D deformable models. Streaming shape deformations of complex 3D models arising from a remote user's manipulations is a challenging task. In this paper, we present a framework based on spectral transformation that encodes surface deformations in a frequency format to successfully meet the challenge, and demonstrate its use in a distributed virtual environment. Our research contributions through this framework include: i) we reduce the data size to be streamed for surface deformations since we stream only the transformed spectral coefficients and not the deformed model; ii) we propose a mapping method to allow models with multi-resolutions to have the same deformations simultaneously; iii) our streaming strategy can tolerate loss without the need for special handling of packet loss. Our system guarantees real-time transmission of shape deformations and ensures the smooth motions of 3D models. Moreover, we achieve very effective performance over real Internet conditions as well as a local LAN. Experimental results show that we get low distortion and small delays even when surface deformations of large and complicated 3D models are streamed over lossy networks.\",\"PeriodicalId\":151060,\"journal\":{\"name\":\"2010 IEEE Virtual Reality Conference (VR)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Virtual Reality Conference (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2010.5444793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Virtual Reality Conference (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2010.5444793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Streaming 3D shape deformations in collaborative virtual environment
Collaborative virtual environment has been limited on static or rigid 3D models, due to the difficulties of real-time streaming of large amounts of data that is required to describe motions of 3D deformable models. Streaming shape deformations of complex 3D models arising from a remote user's manipulations is a challenging task. In this paper, we present a framework based on spectral transformation that encodes surface deformations in a frequency format to successfully meet the challenge, and demonstrate its use in a distributed virtual environment. Our research contributions through this framework include: i) we reduce the data size to be streamed for surface deformations since we stream only the transformed spectral coefficients and not the deformed model; ii) we propose a mapping method to allow models with multi-resolutions to have the same deformations simultaneously; iii) our streaming strategy can tolerate loss without the need for special handling of packet loss. Our system guarantees real-time transmission of shape deformations and ensures the smooth motions of 3D models. Moreover, we achieve very effective performance over real Internet conditions as well as a local LAN. Experimental results show that we get low distortion and small delays even when surface deformations of large and complicated 3D models are streamed over lossy networks.