{"title":"强化:数字设计的分析前硅侧通道特性","authors":"A. V. Lakshmy, C. Rebeiro, S. Bhunia","doi":"10.1109/ASP-DAC52403.2022.9712551","DOIUrl":null,"url":null,"abstract":"Power side-channel attacks are potent security threats that exploit the power consumption patterns of an electronic device to glean sensitive information ranging from secret keys and passwords to web-browsing activity. While pre-Silicon tools promise early detection of side-channel leakage at the design stage, they require several hours of simulation time. In this paper, we present an analytical framework called FORTIFY that estimates the power side-channel vulnerability of digital circuit designs at signal-level granularity, given the RTL or gate-level netlist of the design, at least 100 times faster than contemporary works. We demonstrate the correctness of FORTIFY by comparing it with a recent simulation-based side-channel leakage analysis framework. We also test its scalability by evaluating FORTIFY on an open-source System-on-Chip.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FORTIFY: Analytical Pre-Silicon Side-Channel Characterization of Digital Designs\",\"authors\":\"A. V. Lakshmy, C. Rebeiro, S. Bhunia\",\"doi\":\"10.1109/ASP-DAC52403.2022.9712551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power side-channel attacks are potent security threats that exploit the power consumption patterns of an electronic device to glean sensitive information ranging from secret keys and passwords to web-browsing activity. While pre-Silicon tools promise early detection of side-channel leakage at the design stage, they require several hours of simulation time. In this paper, we present an analytical framework called FORTIFY that estimates the power side-channel vulnerability of digital circuit designs at signal-level granularity, given the RTL or gate-level netlist of the design, at least 100 times faster than contemporary works. We demonstrate the correctness of FORTIFY by comparing it with a recent simulation-based side-channel leakage analysis framework. We also test its scalability by evaluating FORTIFY on an open-source System-on-Chip.\",\"PeriodicalId\":239260,\"journal\":{\"name\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC52403.2022.9712551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC52403.2022.9712551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FORTIFY: Analytical Pre-Silicon Side-Channel Characterization of Digital Designs
Power side-channel attacks are potent security threats that exploit the power consumption patterns of an electronic device to glean sensitive information ranging from secret keys and passwords to web-browsing activity. While pre-Silicon tools promise early detection of side-channel leakage at the design stage, they require several hours of simulation time. In this paper, we present an analytical framework called FORTIFY that estimates the power side-channel vulnerability of digital circuit designs at signal-level granularity, given the RTL or gate-level netlist of the design, at least 100 times faster than contemporary works. We demonstrate the correctness of FORTIFY by comparing it with a recent simulation-based side-channel leakage analysis framework. We also test its scalability by evaluating FORTIFY on an open-source System-on-Chip.