{"title":"基于上下文相关后验概率的两步关键词识别方法","authors":"T. Zheng, Jing Li, Zhanjiang Song, Mingxing Xu","doi":"10.1109/CHINSL.2004.1409641","DOIUrl":null,"url":null,"abstract":"Keyword weighting plays an important role in traditional keyword spotting (KWS) systems: it helps detect keyword candidates in an utterance so that they will not be missed. However, if the keywords are over-weighted, there will be a high number of false alarms, which will slow down the system and might introduce rejection errors; on the other hand, if the keywords are insufficiently weighted, the detection rate is not guaranteed. It is difficult to make a compromise with regard to keyword weighting. A two-step KWS method based on context-dependent a posteriori probability (CDAPP) is proposed in this paper as a way to solve this problem. The first step adopts a continuous speech recognition method, to generate a sequence of acoustic symbols for the second step, which performs a fuzzy keyword search. Preliminary experiments show that the proposed strategy is a promising one that needs additional investigation.","PeriodicalId":212562,"journal":{"name":"2004 International Symposium on Chinese Spoken Language Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A two-step keyword spotting method based on context-dependent a posteriori probability\",\"authors\":\"T. Zheng, Jing Li, Zhanjiang Song, Mingxing Xu\",\"doi\":\"10.1109/CHINSL.2004.1409641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keyword weighting plays an important role in traditional keyword spotting (KWS) systems: it helps detect keyword candidates in an utterance so that they will not be missed. However, if the keywords are over-weighted, there will be a high number of false alarms, which will slow down the system and might introduce rejection errors; on the other hand, if the keywords are insufficiently weighted, the detection rate is not guaranteed. It is difficult to make a compromise with regard to keyword weighting. A two-step KWS method based on context-dependent a posteriori probability (CDAPP) is proposed in this paper as a way to solve this problem. The first step adopts a continuous speech recognition method, to generate a sequence of acoustic symbols for the second step, which performs a fuzzy keyword search. Preliminary experiments show that the proposed strategy is a promising one that needs additional investigation.\",\"PeriodicalId\":212562,\"journal\":{\"name\":\"2004 International Symposium on Chinese Spoken Language Processing\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHINSL.2004.1409641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2004.1409641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A two-step keyword spotting method based on context-dependent a posteriori probability
Keyword weighting plays an important role in traditional keyword spotting (KWS) systems: it helps detect keyword candidates in an utterance so that they will not be missed. However, if the keywords are over-weighted, there will be a high number of false alarms, which will slow down the system and might introduce rejection errors; on the other hand, if the keywords are insufficiently weighted, the detection rate is not guaranteed. It is difficult to make a compromise with regard to keyword weighting. A two-step KWS method based on context-dependent a posteriori probability (CDAPP) is proposed in this paper as a way to solve this problem. The first step adopts a continuous speech recognition method, to generate a sequence of acoustic symbols for the second step, which performs a fuzzy keyword search. Preliminary experiments show that the proposed strategy is a promising one that needs additional investigation.