先进交通标志识别系统

Evgenij M. Macheev, A. V. Devyatkin, Aleksandr R. Muzalevsky
{"title":"先进交通标志识别系统","authors":"Evgenij M. Macheev, A. V. Devyatkin, Aleksandr R. Muzalevsky","doi":"10.1109/scm55405.2022.9794877","DOIUrl":null,"url":null,"abstract":"Solving the problem of identifying and recognizing traffic signs is one of the most important research topics necessary for designing unmanned vehicles. The paper describes the general implementation of the sign detection subsystem and suggests a solution to the problem of the absence of individual traffic signs in open datasets based on the use of convolutional neural networks.","PeriodicalId":162457,"journal":{"name":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advanced Traffic Sign Recognition System\",\"authors\":\"Evgenij M. Macheev, A. V. Devyatkin, Aleksandr R. Muzalevsky\",\"doi\":\"10.1109/scm55405.2022.9794877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving the problem of identifying and recognizing traffic signs is one of the most important research topics necessary for designing unmanned vehicles. The paper describes the general implementation of the sign detection subsystem and suggests a solution to the problem of the absence of individual traffic signs in open datasets based on the use of convolutional neural networks.\",\"PeriodicalId\":162457,\"journal\":{\"name\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scm55405.2022.9794877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scm55405.2022.9794877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

解决交通标志的识别问题是无人驾驶车辆设计的重要研究课题之一。本文描述了标志检测子系统的一般实现,并提出了一种基于卷积神经网络的开放数据集中缺少单个交通标志问题的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Traffic Sign Recognition System
Solving the problem of identifying and recognizing traffic signs is one of the most important research topics necessary for designing unmanned vehicles. The paper describes the general implementation of the sign detection subsystem and suggests a solution to the problem of the absence of individual traffic signs in open datasets based on the use of convolutional neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信