SET脉冲电流精确预测的机器学习和多项式混沌模型

Vishu Saxena, Yash Jain, Sparsh Mittal
{"title":"SET脉冲电流精确预测的机器学习和多项式混沌模型","authors":"Vishu Saxena, Yash Jain, Sparsh Mittal","doi":"10.1109/ISVLSI59464.2023.10238585","DOIUrl":null,"url":null,"abstract":"This research investigates how heavy-ion irradiation affects the single event transient (SET) response of 14nm silicon-on-insulator (SOI) FinFET. The researchers generally use a TCAD tool (e.g., Sentauras TCAD) for developing a SET pulse current model. However, the TCAD simulations are time-consuming, which prohibits efficient design-space exploration. We propose efficient models for predicting SET pulse current with high accuracy. We use (1) polynomial chaos (PC) based models (2) ML regression techniques (3) artificial neural networks and 1Dconvolution neural network based models. Striking of a heavy-ion leads to transient behavior, which is very different from the normal behavior. Hence, for all the above predictors, we also evaluate the corresponding piecewise predictors. While TCAD tools take 4 hours for each simulation on a high-end computer, our proposed models take much lower latency (e.g., few seconds). This allows designers to explore a larger design space. Our proposed piecewise 1D-CNN model achieves state-of-the-art MSE which is 2.15× 1$0^{-6}$ mA-squared. Overall, our study provides insights into how PC and ML-based regression models can be used to enhance the efficiency of SET analysis in circuit design.","PeriodicalId":199371,"journal":{"name":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning and Polynomial Chaos models for Accurate Prediction of SET Pulse Current\",\"authors\":\"Vishu Saxena, Yash Jain, Sparsh Mittal\",\"doi\":\"10.1109/ISVLSI59464.2023.10238585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research investigates how heavy-ion irradiation affects the single event transient (SET) response of 14nm silicon-on-insulator (SOI) FinFET. The researchers generally use a TCAD tool (e.g., Sentauras TCAD) for developing a SET pulse current model. However, the TCAD simulations are time-consuming, which prohibits efficient design-space exploration. We propose efficient models for predicting SET pulse current with high accuracy. We use (1) polynomial chaos (PC) based models (2) ML regression techniques (3) artificial neural networks and 1Dconvolution neural network based models. Striking of a heavy-ion leads to transient behavior, which is very different from the normal behavior. Hence, for all the above predictors, we also evaluate the corresponding piecewise predictors. While TCAD tools take 4 hours for each simulation on a high-end computer, our proposed models take much lower latency (e.g., few seconds). This allows designers to explore a larger design space. Our proposed piecewise 1D-CNN model achieves state-of-the-art MSE which is 2.15× 1$0^{-6}$ mA-squared. Overall, our study provides insights into how PC and ML-based regression models can be used to enhance the efficiency of SET analysis in circuit design.\",\"PeriodicalId\":199371,\"journal\":{\"name\":\"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI59464.2023.10238585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI59464.2023.10238585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了重离子辐照对14nm绝缘体上硅(SOI) FinFET单事件瞬态(SET)响应的影响。研究人员通常使用TCAD工具(例如Sentauras TCAD)来开发SET脉冲电流模型。然而,TCAD模拟是耗时的,这阻碍了有效的设计空间探索。我们提出了预测SET脉冲电流的有效模型,具有较高的精度。我们使用(1)基于多项式混沌(PC)的模型(2)ML回归技术(3)基于人工神经网络和1Dconvolution神经网络的模型。重离子的撞击会导致与正常行为大不相同的瞬态行为。因此,对于上述所有预测因子,我们也评估相应的分段预测因子。TCAD工具在高端计算机上进行每次模拟需要4个小时,而我们提出的模型需要更低的延迟(例如,几秒钟)。这使得设计师可以探索更大的设计空间。我们提出的分段1D-CNN模型实现了最先进的MSE,为2.15× 1$0^{-6}$ ma平方。总的来说,我们的研究提供了如何使用基于PC和ml的回归模型来提高电路设计中SET分析的效率的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning and Polynomial Chaos models for Accurate Prediction of SET Pulse Current
This research investigates how heavy-ion irradiation affects the single event transient (SET) response of 14nm silicon-on-insulator (SOI) FinFET. The researchers generally use a TCAD tool (e.g., Sentauras TCAD) for developing a SET pulse current model. However, the TCAD simulations are time-consuming, which prohibits efficient design-space exploration. We propose efficient models for predicting SET pulse current with high accuracy. We use (1) polynomial chaos (PC) based models (2) ML regression techniques (3) artificial neural networks and 1Dconvolution neural network based models. Striking of a heavy-ion leads to transient behavior, which is very different from the normal behavior. Hence, for all the above predictors, we also evaluate the corresponding piecewise predictors. While TCAD tools take 4 hours for each simulation on a high-end computer, our proposed models take much lower latency (e.g., few seconds). This allows designers to explore a larger design space. Our proposed piecewise 1D-CNN model achieves state-of-the-art MSE which is 2.15× 1$0^{-6}$ mA-squared. Overall, our study provides insights into how PC and ML-based regression models can be used to enhance the efficiency of SET analysis in circuit design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信