基于状态估计和输入估计的飞机传感器故障检测

Ahmad Ansari, D. Bernstein
{"title":"基于状态估计和输入估计的飞机传感器故障检测","authors":"Ahmad Ansari, D. Bernstein","doi":"10.1109/ACC.2016.7526603","DOIUrl":null,"url":null,"abstract":"This paper presents a method for detecting aircraft sensor faults using state and input estimation. We formulate the kinematics as a nonlinear state space system, which requires no modeling information, and thus is applicable to all aircraft. To illustrate the method, we investigate three fault-detection scenarios, namely, faulty pitot tube, angle-of-attack sensor, and accelerometers. We use the extended Kalman filter for pitot-tube and angle-of-attack sensor fault detection, and retrospective cost input estimation for accelerometer fault detection. For numerical illustration, we use the NASA Generic Transport Model to detect stuck, bias, drift, and deadzone sensor faults.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Aircraft sensor fault detection using state and input estimation\",\"authors\":\"Ahmad Ansari, D. Bernstein\",\"doi\":\"10.1109/ACC.2016.7526603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for detecting aircraft sensor faults using state and input estimation. We formulate the kinematics as a nonlinear state space system, which requires no modeling information, and thus is applicable to all aircraft. To illustrate the method, we investigate three fault-detection scenarios, namely, faulty pitot tube, angle-of-attack sensor, and accelerometers. We use the extended Kalman filter for pitot-tube and angle-of-attack sensor fault detection, and retrospective cost input estimation for accelerometer fault detection. For numerical illustration, we use the NASA Generic Transport Model to detect stuck, bias, drift, and deadzone sensor faults.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7526603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7526603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

提出了一种基于状态估计和输入估计的飞机传感器故障检测方法。我们将运动学表述为一个非线性状态空间系统,不需要建模信息,因此适用于所有飞机。为了说明该方法,我们研究了三种故障检测场景,即故障皮托管,迎角传感器和加速度计。我们将扩展卡尔曼滤波用于皮托管和迎角传感器的故障检测,并将回顾性成本输入估计用于加速度计的故障检测。为了进行数值说明,我们使用NASA通用传输模型来检测卡、偏置、漂移和死区传感器故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aircraft sensor fault detection using state and input estimation
This paper presents a method for detecting aircraft sensor faults using state and input estimation. We formulate the kinematics as a nonlinear state space system, which requires no modeling information, and thus is applicable to all aircraft. To illustrate the method, we investigate three fault-detection scenarios, namely, faulty pitot tube, angle-of-attack sensor, and accelerometers. We use the extended Kalman filter for pitot-tube and angle-of-attack sensor fault detection, and retrospective cost input estimation for accelerometer fault detection. For numerical illustration, we use the NASA Generic Transport Model to detect stuck, bias, drift, and deadzone sensor faults.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信