Il-Yop Chung, Wenxin Liu, M. Andrus, K. Schoder, S. Leng, D. Cartes, M. Steurer
{"title":"将双向dc-dc变换器模型集成到舰船MVDC电力系统的大规模系统仿真中","authors":"Il-Yop Chung, Wenxin Liu, M. Andrus, K. Schoder, S. Leng, D. Cartes, M. Steurer","doi":"10.1109/ESTS.2009.4906531","DOIUrl":null,"url":null,"abstract":"To improve energy flexibility and deal with peak energy demand in shipboard power system, a bi-directional dc/dc converter is investigated for a notional U.S. Navy Medium Voltage DC (MVDC) shipboard power system. Surplus energy due to light electric load or ship-speed variation can be captured by energy storages distributed in 800 V load zones and during heavy load or black starting condition, supplied to the rest of the 5 kV MVDC system through the bi-directional dc/dc converters. This paper presents the controller optimization process using the particle swarm optimization for an isolated-type bi-directional dc-dc converter. The control performance of the proposed controller is evaluated using small-signal average models and a large-scale simulation of the notional U.S. Navy MVDC system using the real-time digital simulator.","PeriodicalId":446953,"journal":{"name":"2009 IEEE Electric Ship Technologies Symposium","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Integration of a bi-directional dc-dc converter model into a large-scale system simulation of a shipboard MVDC power system\",\"authors\":\"Il-Yop Chung, Wenxin Liu, M. Andrus, K. Schoder, S. Leng, D. Cartes, M. Steurer\",\"doi\":\"10.1109/ESTS.2009.4906531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve energy flexibility and deal with peak energy demand in shipboard power system, a bi-directional dc/dc converter is investigated for a notional U.S. Navy Medium Voltage DC (MVDC) shipboard power system. Surplus energy due to light electric load or ship-speed variation can be captured by energy storages distributed in 800 V load zones and during heavy load or black starting condition, supplied to the rest of the 5 kV MVDC system through the bi-directional dc/dc converters. This paper presents the controller optimization process using the particle swarm optimization for an isolated-type bi-directional dc-dc converter. The control performance of the proposed controller is evaluated using small-signal average models and a large-scale simulation of the notional U.S. Navy MVDC system using the real-time digital simulator.\",\"PeriodicalId\":446953,\"journal\":{\"name\":\"2009 IEEE Electric Ship Technologies Symposium\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Electric Ship Technologies Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2009.4906531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Electric Ship Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2009.4906531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of a bi-directional dc-dc converter model into a large-scale system simulation of a shipboard MVDC power system
To improve energy flexibility and deal with peak energy demand in shipboard power system, a bi-directional dc/dc converter is investigated for a notional U.S. Navy Medium Voltage DC (MVDC) shipboard power system. Surplus energy due to light electric load or ship-speed variation can be captured by energy storages distributed in 800 V load zones and during heavy load or black starting condition, supplied to the rest of the 5 kV MVDC system through the bi-directional dc/dc converters. This paper presents the controller optimization process using the particle swarm optimization for an isolated-type bi-directional dc-dc converter. The control performance of the proposed controller is evaluated using small-signal average models and a large-scale simulation of the notional U.S. Navy MVDC system using the real-time digital simulator.