Nuno Moniz, Rita P. Ribeiro, Vítor Cerqueira, N. Chawla
{"title":"SMOTEBoost用于回归:改进极值的预测","authors":"Nuno Moniz, Rita P. Ribeiro, Vítor Cerqueira, N. Chawla","doi":"10.1109/DSAA.2018.00025","DOIUrl":null,"url":null,"abstract":"Supervised learning with imbalanced domains is one of the biggest challenges in machine learning. Such tasks differ from standard learning tasks by assuming a skewed distribution of target variables, and user domain preference towards under-represented cases. Most research has focused on imbalanced classification tasks, where a wide range of solutions has been tested. Still, little work has been done concerning imbalanced regression tasks. In this paper, we propose an adaptation of the SMOTEBoost approach for the problem of imbalanced regression. Originally designed for classification tasks, it combines boosting methods and the SMOTE resampling strategy. We present four variants of SMOTEBoost and provide an experimental evaluation using 30 datasets with an extensive analysis of results in order to assess the ability of SMOTEBoost methods in predicting extreme target values, and their predictive trade-off concerning baseline boosting methods. SMOTEBoost is publicly available in a software package.","PeriodicalId":208455,"journal":{"name":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"SMOTEBoost for Regression: Improving the Prediction of Extreme Values\",\"authors\":\"Nuno Moniz, Rita P. Ribeiro, Vítor Cerqueira, N. Chawla\",\"doi\":\"10.1109/DSAA.2018.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supervised learning with imbalanced domains is one of the biggest challenges in machine learning. Such tasks differ from standard learning tasks by assuming a skewed distribution of target variables, and user domain preference towards under-represented cases. Most research has focused on imbalanced classification tasks, where a wide range of solutions has been tested. Still, little work has been done concerning imbalanced regression tasks. In this paper, we propose an adaptation of the SMOTEBoost approach for the problem of imbalanced regression. Originally designed for classification tasks, it combines boosting methods and the SMOTE resampling strategy. We present four variants of SMOTEBoost and provide an experimental evaluation using 30 datasets with an extensive analysis of results in order to assess the ability of SMOTEBoost methods in predicting extreme target values, and their predictive trade-off concerning baseline boosting methods. SMOTEBoost is publicly available in a software package.\",\"PeriodicalId\":208455,\"journal\":{\"name\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA.2018.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SMOTEBoost for Regression: Improving the Prediction of Extreme Values
Supervised learning with imbalanced domains is one of the biggest challenges in machine learning. Such tasks differ from standard learning tasks by assuming a skewed distribution of target variables, and user domain preference towards under-represented cases. Most research has focused on imbalanced classification tasks, where a wide range of solutions has been tested. Still, little work has been done concerning imbalanced regression tasks. In this paper, we propose an adaptation of the SMOTEBoost approach for the problem of imbalanced regression. Originally designed for classification tasks, it combines boosting methods and the SMOTE resampling strategy. We present four variants of SMOTEBoost and provide an experimental evaluation using 30 datasets with an extensive analysis of results in order to assess the ability of SMOTEBoost methods in predicting extreme target values, and their predictive trade-off concerning baseline boosting methods. SMOTEBoost is publicly available in a software package.