同质多数的异构编程

Tom Deakin, J. Cownie, Wei-Chen Lin, Simon McIntosh-Smith
{"title":"同质多数的异构编程","authors":"Tom Deakin, J. Cownie, Wei-Chen Lin, Simon McIntosh-Smith","doi":"10.1109/P3HPC56579.2022.00006","DOIUrl":null,"url":null,"abstract":"In order to take advantage of the burgeoning diversity in processors at the frontier of supercomputing, the HPC community is migrating and improving codes to utilise heterogeneous nodes, where accelerators, principally GPUs, are highly prevalent in top-tier supercomputer designs. Programs therefore need to embrace at least some of the complexities of heterogeneous architectures. Parallel programming models have evolved to express heterogeneous paradigms whilst providing mechanisms for writing portable, performant programs. History shows that technologies first introduced at the frontier percolate down to local workhorse systems. However, we expect there will always be a mix of systems, some heterogeneous, but some remaining as homogeneous CPU systems. Thus it is important to ensure codes adapted for heterogeneous systems continue to run efficiently on CPUs. In this study, we explore how well widely used heterogeneous programming models perform on CPU-only platforms, and survey the performance portability they offer on the latest CPU architectures.","PeriodicalId":261766,"journal":{"name":"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heterogeneous Programming for the Homogeneous Majority\",\"authors\":\"Tom Deakin, J. Cownie, Wei-Chen Lin, Simon McIntosh-Smith\",\"doi\":\"10.1109/P3HPC56579.2022.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to take advantage of the burgeoning diversity in processors at the frontier of supercomputing, the HPC community is migrating and improving codes to utilise heterogeneous nodes, where accelerators, principally GPUs, are highly prevalent in top-tier supercomputer designs. Programs therefore need to embrace at least some of the complexities of heterogeneous architectures. Parallel programming models have evolved to express heterogeneous paradigms whilst providing mechanisms for writing portable, performant programs. History shows that technologies first introduced at the frontier percolate down to local workhorse systems. However, we expect there will always be a mix of systems, some heterogeneous, but some remaining as homogeneous CPU systems. Thus it is important to ensure codes adapted for heterogeneous systems continue to run efficiently on CPUs. In this study, we explore how well widely used heterogeneous programming models perform on CPU-only platforms, and survey the performance portability they offer on the latest CPU architectures.\",\"PeriodicalId\":261766,\"journal\":{\"name\":\"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/P3HPC56579.2022.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/P3HPC56579.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了利用超级计算前沿处理器的多样性,HPC社区正在迁移和改进代码,以利用异构节点,其中加速器,主要是gpu,在顶级超级计算机设计中非常普遍。因此,程序至少需要包含异构体系结构的一些复杂性。并行编程模型已经发展到表达异构范式,同时提供编写可移植、高性能程序的机制。历史表明,最初在前沿地区引入的技术会渗透到当地的主力系统中。然而,我们期望总是会有系统的混合,有些是异构的,但有些仍然是同质的CPU系统。因此,确保适合异构系统的代码继续在cpu上高效运行是很重要的。在本研究中,我们探讨了广泛使用的异构编程模型在仅CPU平台上的表现,并调查了它们在最新CPU架构上提供的性能可移植性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Programming for the Homogeneous Majority
In order to take advantage of the burgeoning diversity in processors at the frontier of supercomputing, the HPC community is migrating and improving codes to utilise heterogeneous nodes, where accelerators, principally GPUs, are highly prevalent in top-tier supercomputer designs. Programs therefore need to embrace at least some of the complexities of heterogeneous architectures. Parallel programming models have evolved to express heterogeneous paradigms whilst providing mechanisms for writing portable, performant programs. History shows that technologies first introduced at the frontier percolate down to local workhorse systems. However, we expect there will always be a mix of systems, some heterogeneous, but some remaining as homogeneous CPU systems. Thus it is important to ensure codes adapted for heterogeneous systems continue to run efficiently on CPUs. In this study, we explore how well widely used heterogeneous programming models perform on CPU-only platforms, and survey the performance portability they offer on the latest CPU architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信