基于多描述子融合的鲁棒特征匹配

Yuan-Ting Hu, Yen-Yu Lin
{"title":"基于多描述子融合的鲁棒特征匹配","authors":"Yuan-Ting Hu, Yen-Yu Lin","doi":"10.1109/ACPR.2015.7486508","DOIUrl":null,"url":null,"abstract":"We present a novel approach to boost image matching performance by fusing multiple local descriptors in the homography space. Traditional matching methods find correspondences based on a single descriptor and the performance becomes unstable due to the goodness of the chosen descriptor To address this problem, our method uses multiple descriptors and select a good descriptor for matching each feature point. Specifically, we project every correspondence into the homography space, where correct correspondences tend to gather together due to the similarity of their homographies. Then kernel density estimation is applied to measure the density in the homography space and verify the correctness of correspondences. The proposed approach is comprehensively compared with the state-of-the-art methods and the promising results manifest its effectiveness.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust feature matching via multiple descriptor fusion\",\"authors\":\"Yuan-Ting Hu, Yen-Yu Lin\",\"doi\":\"10.1109/ACPR.2015.7486508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel approach to boost image matching performance by fusing multiple local descriptors in the homography space. Traditional matching methods find correspondences based on a single descriptor and the performance becomes unstable due to the goodness of the chosen descriptor To address this problem, our method uses multiple descriptors and select a good descriptor for matching each feature point. Specifically, we project every correspondence into the homography space, where correct correspondences tend to gather together due to the similarity of their homographies. Then kernel density estimation is applied to measure the density in the homography space and verify the correctness of correspondences. The proposed approach is comprehensively compared with the state-of-the-art methods and the promising results manifest its effectiveness.\",\"PeriodicalId\":240902,\"journal\":{\"name\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2015.7486508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的方法,通过在单应性空间中融合多个局部描述符来提高图像匹配性能。传统的匹配方法基于单个描述符进行匹配,由于所选描述符的优劣导致匹配性能不稳定。为了解决这一问题,我们的方法使用多个描述符,并选择一个好的描述符来匹配每个特征点。具体地说,我们将每个对应投影到同形词空间中,由于其同形词的相似性,正确的对应倾向于聚集在一起。然后应用核密度估计测量单应性空间中的密度,验证对应的正确性。本文将所提出的方法与现有的方法进行了全面比较,结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust feature matching via multiple descriptor fusion
We present a novel approach to boost image matching performance by fusing multiple local descriptors in the homography space. Traditional matching methods find correspondences based on a single descriptor and the performance becomes unstable due to the goodness of the chosen descriptor To address this problem, our method uses multiple descriptors and select a good descriptor for matching each feature point. Specifically, we project every correspondence into the homography space, where correct correspondences tend to gather together due to the similarity of their homographies. Then kernel density estimation is applied to measure the density in the homography space and verify the correctness of correspondences. The proposed approach is comprehensively compared with the state-of-the-art methods and the promising results manifest its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信