基于深度多度量学习的人物再识别

Yongxin Ge, Xinqian Gu, Min Chen, Hongxing Wang, Dan Yang
{"title":"基于深度多度量学习的人物再识别","authors":"Yongxin Ge, Xinqian Gu, Min Chen, Hongxing Wang, Dan Yang","doi":"10.1109/ICME.2018.8486502","DOIUrl":null,"url":null,"abstract":"In this paper, to exploit more discriminative information of the global-body and body-parts features, we present a novel deep multi-metric learning (DMML) network for person re-identification under the triplet framework. The main novelty of our learning framework lies in two aspects: 1) Unlike most existing metric learning-based approaches, which learn only one distance metric for comparison, our DMM-L method aims to learn different metrics for the global-body and body-parts features respectively by using convolutional neural network (CNN); 2) A new multi-metric loss function is proposed to train the DMML network, under which the distance of each negative pair is greater than that of each positive pair by a predefined margin, and the correlations of different metrics are maximized. Compared with the previous person re-identification methods that have shown state-of-the-art performances, our DMML approach can achieve competitive results on the challenging CUHK03, CUHKOl, VIPeR and iLIDS datasets.","PeriodicalId":426613,"journal":{"name":"2018 IEEE International Conference on Multimedia and Expo (ICME)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep Multi-Metric Learning for Person Re-Identification\",\"authors\":\"Yongxin Ge, Xinqian Gu, Min Chen, Hongxing Wang, Dan Yang\",\"doi\":\"10.1109/ICME.2018.8486502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, to exploit more discriminative information of the global-body and body-parts features, we present a novel deep multi-metric learning (DMML) network for person re-identification under the triplet framework. The main novelty of our learning framework lies in two aspects: 1) Unlike most existing metric learning-based approaches, which learn only one distance metric for comparison, our DMM-L method aims to learn different metrics for the global-body and body-parts features respectively by using convolutional neural network (CNN); 2) A new multi-metric loss function is proposed to train the DMML network, under which the distance of each negative pair is greater than that of each positive pair by a predefined margin, and the correlations of different metrics are maximized. Compared with the previous person re-identification methods that have shown state-of-the-art performances, our DMML approach can achieve competitive results on the challenging CUHK03, CUHKOl, VIPeR and iLIDS datasets.\",\"PeriodicalId\":426613,\"journal\":{\"name\":\"2018 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2018.8486502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2018.8486502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为了挖掘人体整体特征和身体部位特征的更多判别信息,本文提出了一种新的三联体框架下的深度多度量学习(DMML)网络用于人体再识别。我们的学习框架的主要新颖之处在于两个方面:1)与大多数现有的基于度量学习的方法只学习一个距离度量进行比较不同,我们的DMM-L方法旨在通过卷积神经网络(CNN)分别学习全局和身体部位特征的不同度量;2)提出了一种新的多度量损失函数来训练DMML网络,在该损失函数下,每对负对的距离大于每对正对的距离,并以预定义的余量大于每对正对的距离,使不同度量的相关性最大化。与以往表现优异的人物再识别方法相比,我们的DMML方法在具有挑战性的CUHK03、CUHKOl、VIPeR和iLIDS数据集上取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Multi-Metric Learning for Person Re-Identification
In this paper, to exploit more discriminative information of the global-body and body-parts features, we present a novel deep multi-metric learning (DMML) network for person re-identification under the triplet framework. The main novelty of our learning framework lies in two aspects: 1) Unlike most existing metric learning-based approaches, which learn only one distance metric for comparison, our DMM-L method aims to learn different metrics for the global-body and body-parts features respectively by using convolutional neural network (CNN); 2) A new multi-metric loss function is proposed to train the DMML network, under which the distance of each negative pair is greater than that of each positive pair by a predefined margin, and the correlations of different metrics are maximized. Compared with the previous person re-identification methods that have shown state-of-the-art performances, our DMML approach can achieve competitive results on the challenging CUHK03, CUHKOl, VIPeR and iLIDS datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信