Yongxin Ge, Xinqian Gu, Min Chen, Hongxing Wang, Dan Yang
{"title":"基于深度多度量学习的人物再识别","authors":"Yongxin Ge, Xinqian Gu, Min Chen, Hongxing Wang, Dan Yang","doi":"10.1109/ICME.2018.8486502","DOIUrl":null,"url":null,"abstract":"In this paper, to exploit more discriminative information of the global-body and body-parts features, we present a novel deep multi-metric learning (DMML) network for person re-identification under the triplet framework. The main novelty of our learning framework lies in two aspects: 1) Unlike most existing metric learning-based approaches, which learn only one distance metric for comparison, our DMM-L method aims to learn different metrics for the global-body and body-parts features respectively by using convolutional neural network (CNN); 2) A new multi-metric loss function is proposed to train the DMML network, under which the distance of each negative pair is greater than that of each positive pair by a predefined margin, and the correlations of different metrics are maximized. Compared with the previous person re-identification methods that have shown state-of-the-art performances, our DMML approach can achieve competitive results on the challenging CUHK03, CUHKOl, VIPeR and iLIDS datasets.","PeriodicalId":426613,"journal":{"name":"2018 IEEE International Conference on Multimedia and Expo (ICME)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep Multi-Metric Learning for Person Re-Identification\",\"authors\":\"Yongxin Ge, Xinqian Gu, Min Chen, Hongxing Wang, Dan Yang\",\"doi\":\"10.1109/ICME.2018.8486502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, to exploit more discriminative information of the global-body and body-parts features, we present a novel deep multi-metric learning (DMML) network for person re-identification under the triplet framework. The main novelty of our learning framework lies in two aspects: 1) Unlike most existing metric learning-based approaches, which learn only one distance metric for comparison, our DMM-L method aims to learn different metrics for the global-body and body-parts features respectively by using convolutional neural network (CNN); 2) A new multi-metric loss function is proposed to train the DMML network, under which the distance of each negative pair is greater than that of each positive pair by a predefined margin, and the correlations of different metrics are maximized. Compared with the previous person re-identification methods that have shown state-of-the-art performances, our DMML approach can achieve competitive results on the challenging CUHK03, CUHKOl, VIPeR and iLIDS datasets.\",\"PeriodicalId\":426613,\"journal\":{\"name\":\"2018 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2018.8486502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2018.8486502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Multi-Metric Learning for Person Re-Identification
In this paper, to exploit more discriminative information of the global-body and body-parts features, we present a novel deep multi-metric learning (DMML) network for person re-identification under the triplet framework. The main novelty of our learning framework lies in two aspects: 1) Unlike most existing metric learning-based approaches, which learn only one distance metric for comparison, our DMM-L method aims to learn different metrics for the global-body and body-parts features respectively by using convolutional neural network (CNN); 2) A new multi-metric loss function is proposed to train the DMML network, under which the distance of each negative pair is greater than that of each positive pair by a predefined margin, and the correlations of different metrics are maximized. Compared with the previous person re-identification methods that have shown state-of-the-art performances, our DMML approach can achieve competitive results on the challenging CUHK03, CUHKOl, VIPeR and iLIDS datasets.