拉格朗日错了,帕斯卡是对的

G. Teşeleanu
{"title":"拉格朗日错了,帕斯卡是对的","authors":"G. Teşeleanu","doi":"10.2478/rmm-2022-0004","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we compare the efficiency of the decimal system to the efficiency of different mixed radix representations. We use as a starting point for our study the duodecimal systems suggested by Pascal and the Maya “Long Count” system. Using the quality index we experimentally show that two slight deviations from the duodecimal system are more efficient than the previous two systems and also than the decimal system.","PeriodicalId":120489,"journal":{"name":"Recreational Mathematics Magazine","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lagrange was Wrong, Pascal was Right\",\"authors\":\"G. Teşeleanu\",\"doi\":\"10.2478/rmm-2022-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we compare the efficiency of the decimal system to the efficiency of different mixed radix representations. We use as a starting point for our study the duodecimal systems suggested by Pascal and the Maya “Long Count” system. Using the quality index we experimentally show that two slight deviations from the duodecimal system are more efficient than the previous two systems and also than the decimal system.\",\"PeriodicalId\":120489,\"journal\":{\"name\":\"Recreational Mathematics Magazine\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recreational Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rmm-2022-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recreational Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rmm-2022-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文比较了十进制系统的效率与不同混合基数表示的效率。我们使用帕斯卡和玛雅“长计数”系统提出的十二十进制系统作为我们研究的起点。利用质量指数,我们实验表明,与十二进制的两个轻微偏差比前两个系统更有效,也比十进制更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrange was Wrong, Pascal was Right
Abstract In this paper we compare the efficiency of the decimal system to the efficiency of different mixed radix representations. We use as a starting point for our study the duodecimal systems suggested by Pascal and the Maya “Long Count” system. Using the quality index we experimentally show that two slight deviations from the duodecimal system are more efficient than the previous two systems and also than the decimal system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信