没有异或引理的伪随机生成器

M. Sudan, L. Trevisan, S. Vadhan
{"title":"没有异或引理的伪随机生成器","authors":"M. Sudan, L. Trevisan, S. Vadhan","doi":"10.1109/CCC.1999.766253","DOIUrl":null,"url":null,"abstract":"Summary form only given. R. Impagliazzo and A. Wigderson (1997) have recently shown that if there exists a decision problem solvable in time 2/sup O(n)/ and having circuit complexity 2/sup /spl Omega/(n)/ (for all but finitely many n) then P=BPP. This result is a culmination of a series of works showing connections between the existence of hard predicates and the existence of good pseudorandom generators. The construction of Impagliazzo and Wigderson goes through three phases of \"hardness amplification\" (a multivariate polynomial encoding, a first derandomized XOR Lemma, and a second derandomized XOR Lemma) that are composed with the Nisan-Wigderson (1994) generator. In this paper we present two different approaches to proving the main result of Impagliazzo and Wigderson. In developing each approach, we introduce new techniques and prove new results that could be useful in future improvements and/or applications of hardness-randomness trade-offs.","PeriodicalId":432015,"journal":{"name":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pseudorandom generators without the XOR lemma\",\"authors\":\"M. Sudan, L. Trevisan, S. Vadhan\",\"doi\":\"10.1109/CCC.1999.766253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. R. Impagliazzo and A. Wigderson (1997) have recently shown that if there exists a decision problem solvable in time 2/sup O(n)/ and having circuit complexity 2/sup /spl Omega/(n)/ (for all but finitely many n) then P=BPP. This result is a culmination of a series of works showing connections between the existence of hard predicates and the existence of good pseudorandom generators. The construction of Impagliazzo and Wigderson goes through three phases of \\\"hardness amplification\\\" (a multivariate polynomial encoding, a first derandomized XOR Lemma, and a second derandomized XOR Lemma) that are composed with the Nisan-Wigderson (1994) generator. In this paper we present two different approaches to proving the main result of Impagliazzo and Wigderson. In developing each approach, we introduce new techniques and prove new results that could be useful in future improvements and/or applications of hardness-randomness trade-offs.\",\"PeriodicalId\":432015,\"journal\":{\"name\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.1999.766253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.1999.766253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

只提供摘要形式。R. Impagliazzo和a . Wigderson(1997)最近表明,如果存在一个决策问题,在时间2/sup O(n)/和电路复杂性2/sup /spl Omega/(n)/(除了有限多个n),那么P=BPP。这个结果是一系列展示硬谓词存在和良好伪随机生成器存在之间联系的工作的高潮。Impagliazzo和Wigderson的构造经历了“硬度放大”的三个阶段(多元多项式编码、第一个非随机化异或引理和第二个非随机化异或引理),这些阶段由Nisan-Wigderson(1994)生成器组成。在本文中,我们提出了两种不同的方法来证明Impagliazzo和Wigderson的主要结果。在开发每种方法的过程中,我们引入了新的技术并证明了新的结果,这些结果可能对未来的改进和/或硬度-随机性权衡的应用有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudorandom generators without the XOR lemma
Summary form only given. R. Impagliazzo and A. Wigderson (1997) have recently shown that if there exists a decision problem solvable in time 2/sup O(n)/ and having circuit complexity 2/sup /spl Omega/(n)/ (for all but finitely many n) then P=BPP. This result is a culmination of a series of works showing connections between the existence of hard predicates and the existence of good pseudorandom generators. The construction of Impagliazzo and Wigderson goes through three phases of "hardness amplification" (a multivariate polynomial encoding, a first derandomized XOR Lemma, and a second derandomized XOR Lemma) that are composed with the Nisan-Wigderson (1994) generator. In this paper we present two different approaches to proving the main result of Impagliazzo and Wigderson. In developing each approach, we introduce new techniques and prove new results that could be useful in future improvements and/or applications of hardness-randomness trade-offs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信