Cayley代数6维平面子流形上厄米结构的稳定性

M. Banaru, G. Banaru
{"title":"Cayley代数6维平面子流形上厄米结构的稳定性","authors":"M. Banaru, G. Banaru","doi":"10.5922/0321-4796-2021-52-3","DOIUrl":null,"url":null,"abstract":"We consider 6-dimensional planar submanifolds of Cayley algebra. As it is known, the so-called Brown — Gray three-fold vector cross prod­ucts induce almost Hermitian structures on such submanifolds. We select the case when the almost Hermitian structures on 6-dimensional planar submanifolds of Cayley algebra are Hermitian, i. e. these structures are in­tegrable.\n\nIt is proved that the Hermitian structure on a 6-dimensional planar submanifold of Cayley algebra is stable if and only if such submanifold is totally geodesic.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On stability of Hermitian structures on 6-dimensional planar submanifolds of Cayley algebra\",\"authors\":\"M. Banaru, G. Banaru\",\"doi\":\"10.5922/0321-4796-2021-52-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider 6-dimensional planar submanifolds of Cayley algebra. As it is known, the so-called Brown — Gray three-fold vector cross prod­ucts induce almost Hermitian structures on such submanifolds. We select the case when the almost Hermitian structures on 6-dimensional planar submanifolds of Cayley algebra are Hermitian, i. e. these structures are in­tegrable.\\n\\nIt is proved that the Hermitian structure on a 6-dimensional planar submanifold of Cayley algebra is stable if and only if such submanifold is totally geodesic.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2021-52-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2021-52-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

考虑Cayley代数的6维平面子流形。众所周知,所谓的Brown - Gray三重向量叉积在这种子流形上产生了几乎厄米结构。研究了Cayley代数的6维平面子流形上的几乎厄米结构是厄米结构的情况,即这些结构是不可积的。证明了Cayley代数的6维平面子流形上的厄米结构当且仅当该子流形是完全测地线时是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On stability of Hermitian structures on 6-dimensional planar submanifolds of Cayley algebra
We consider 6-dimensional planar submanifolds of Cayley algebra. As it is known, the so-called Brown — Gray three-fold vector cross prod­ucts induce almost Hermitian structures on such submanifolds. We select the case when the almost Hermitian structures on 6-dimensional planar submanifolds of Cayley algebra are Hermitian, i. e. these structures are in­tegrable. It is proved that the Hermitian structure on a 6-dimensional planar submanifold of Cayley algebra is stable if and only if such submanifold is totally geodesic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信