{"title":"将二元函数映射到实用的绝热量子计算机","authors":"David J. Rosenbaum, M. Perkowski","doi":"10.1109/ISMVL.2010.57","DOIUrl":null,"url":null,"abstract":"Efficiently mapping binary functions to adiabatic quantum computers is an important problem because the resulting circuits can be used as oracles in Grover's algorithm. This paper presents a method for mapping binary functions to a two-dimensional grid of qubits with nearest neighbor interactions which is used in a prototype from D-Wave Systems. This is done by writing the binary function in a special form. This allows the binary function to be implemented by converting each gate into a 3-local Hamiltonian. These 3-local Hamiltonians are then converted into two-local Hamiltonians which are mapped to the grid of qubits.","PeriodicalId":447743,"journal":{"name":"2010 40th IEEE International Symposium on Multiple-Valued Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping Binary Functions to a Practical Adiabatic Quantum Computer\",\"authors\":\"David J. Rosenbaum, M. Perkowski\",\"doi\":\"10.1109/ISMVL.2010.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently mapping binary functions to adiabatic quantum computers is an important problem because the resulting circuits can be used as oracles in Grover's algorithm. This paper presents a method for mapping binary functions to a two-dimensional grid of qubits with nearest neighbor interactions which is used in a prototype from D-Wave Systems. This is done by writing the binary function in a special form. This allows the binary function to be implemented by converting each gate into a 3-local Hamiltonian. These 3-local Hamiltonians are then converted into two-local Hamiltonians which are mapped to the grid of qubits.\",\"PeriodicalId\":447743,\"journal\":{\"name\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2010.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 40th IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2010.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mapping Binary Functions to a Practical Adiabatic Quantum Computer
Efficiently mapping binary functions to adiabatic quantum computers is an important problem because the resulting circuits can be used as oracles in Grover's algorithm. This paper presents a method for mapping binary functions to a two-dimensional grid of qubits with nearest neighbor interactions which is used in a prototype from D-Wave Systems. This is done by writing the binary function in a special form. This allows the binary function to be implemented by converting each gate into a 3-local Hamiltonian. These 3-local Hamiltonians are then converted into two-local Hamiltonians which are mapped to the grid of qubits.