不平衡数据性能度量的理论分析

V. García, R. A. Mollineda, J. S. Sánchez
{"title":"不平衡数据性能度量的理论分析","authors":"V. García, R. A. Mollineda, J. S. Sánchez","doi":"10.1109/ICPR.2010.156","DOIUrl":null,"url":null,"abstract":"This paper analyzes a generalization of a new metric to evaluate the classification performance in imbalanced domains, combining some estimate of the overall accuracy with a plain index about how dominant the class with the highest individual accuracy is. A theoretical analysis shows the merits of this metric when compared to other well-known measures.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Theoretical Analysis of a Performance Measure for Imbalanced Data\",\"authors\":\"V. García, R. A. Mollineda, J. S. Sánchez\",\"doi\":\"10.1109/ICPR.2010.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes a generalization of a new metric to evaluate the classification performance in imbalanced domains, combining some estimate of the overall accuracy with a plain index about how dominant the class with the highest individual accuracy is. A theoretical analysis shows the merits of this metric when compared to other well-known measures.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

本文分析了一种评价不平衡领域分类性能的新度量的泛化,该度量将总体精度的一些估计与具有最高个体精度的类别的优势程度的简单指标相结合。理论分析表明,与其他众所周知的度量相比,该度量的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical Analysis of a Performance Measure for Imbalanced Data
This paper analyzes a generalization of a new metric to evaluate the classification performance in imbalanced domains, combining some estimate of the overall accuracy with a plain index about how dominant the class with the highest individual accuracy is. A theoretical analysis shows the merits of this metric when compared to other well-known measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信