太阳能光伏组件用共地无变压器逆变器

S. Hasan, Benjamin Shaffer, Hassan A. Hassan, M. Scott, Y. Siwakoti, G. Town
{"title":"太阳能光伏组件用共地无变压器逆变器","authors":"S. Hasan, Benjamin Shaffer, Hassan A. Hassan, M. Scott, Y. Siwakoti, G. Town","doi":"10.1109/APEC.2018.8341004","DOIUrl":null,"url":null,"abstract":"This paper presents a new single-phase transformerless inverter providing common ground for grid-connected photovoltaic (PV) systems. It consists of 5 switches, one diode, one capacitor, one small inductor and a small filter at the output stage. A simple Unipolar Sinusoidal Pulse-Width Modulation (SPWM) technique is used to operate the proposed inverter to minimize losses, output current ripple, filter requirements and improve its electromagnetic compatibility (EMC). The proposed topology shares a common ground with the grid and a capacitor is utilized as a virtual DC bus to provide the negative power cycle of the inverter. The capacitor is charged regardless of any switching cycle using a dedicated switch which can in turn reduce the size of capacitor in relation to the switching frequency. The peak ac output voltage is equal to the input DC voltage which reduces the requirement of the high input DC voltages. Simulation and experimental results for a 1 kW prototype are presented to demonstrate the usefulness of the proposed topology.","PeriodicalId":113756,"journal":{"name":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Common-ground transformerless inverter for solar photovoltaic module\",\"authors\":\"S. Hasan, Benjamin Shaffer, Hassan A. Hassan, M. Scott, Y. Siwakoti, G. Town\",\"doi\":\"10.1109/APEC.2018.8341004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new single-phase transformerless inverter providing common ground for grid-connected photovoltaic (PV) systems. It consists of 5 switches, one diode, one capacitor, one small inductor and a small filter at the output stage. A simple Unipolar Sinusoidal Pulse-Width Modulation (SPWM) technique is used to operate the proposed inverter to minimize losses, output current ripple, filter requirements and improve its electromagnetic compatibility (EMC). The proposed topology shares a common ground with the grid and a capacitor is utilized as a virtual DC bus to provide the negative power cycle of the inverter. The capacitor is charged regardless of any switching cycle using a dedicated switch which can in turn reduce the size of capacitor in relation to the switching frequency. The peak ac output voltage is equal to the input DC voltage which reduces the requirement of the high input DC voltages. Simulation and experimental results for a 1 kW prototype are presented to demonstrate the usefulness of the proposed topology.\",\"PeriodicalId\":113756,\"journal\":{\"name\":\"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.2018.8341004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2018.8341004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种新型的单相无变压器逆变器,为并网光伏系统提供公共接地。它由5个开关、一个二极管、一个电容、一个小型电感和一个输出级的小型滤波器组成。该逆变器采用简单的单极正弦脉宽调制(SPWM)技术,最大限度地降低了损耗、输出电流纹波、滤波器要求并提高了电磁兼容性(EMC)。所提出的拓扑结构与电网共享一个共同点,并利用电容器作为虚拟直流总线来提供逆变器的负功率循环。使用专用开关对电容器进行充电,而不考虑任何开关周期,这反过来又可以减小与开关频率相关的电容器的尺寸。交流输出电压峰值等于输入直流电压,从而降低了对高输入直流电压的要求。通过1 kW样机的仿真和实验结果,证明了所提拓扑的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common-ground transformerless inverter for solar photovoltaic module
This paper presents a new single-phase transformerless inverter providing common ground for grid-connected photovoltaic (PV) systems. It consists of 5 switches, one diode, one capacitor, one small inductor and a small filter at the output stage. A simple Unipolar Sinusoidal Pulse-Width Modulation (SPWM) technique is used to operate the proposed inverter to minimize losses, output current ripple, filter requirements and improve its electromagnetic compatibility (EMC). The proposed topology shares a common ground with the grid and a capacitor is utilized as a virtual DC bus to provide the negative power cycle of the inverter. The capacitor is charged regardless of any switching cycle using a dedicated switch which can in turn reduce the size of capacitor in relation to the switching frequency. The peak ac output voltage is equal to the input DC voltage which reduces the requirement of the high input DC voltages. Simulation and experimental results for a 1 kW prototype are presented to demonstrate the usefulness of the proposed topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信