一种具有密集连接和注意机制的心律失常分类CNN新模型

Qin Zhan, Peilin Li, Yongle Wu, Jingchun Huang, Xunde Dong
{"title":"一种具有密集连接和注意机制的心律失常分类CNN新模型","authors":"Qin Zhan, Peilin Li, Yongle Wu, Jingchun Huang, Xunde Dong","doi":"10.1109/CBMS55023.2022.00016","DOIUrl":null,"url":null,"abstract":"Cardiac arrhythmia is a common cardiovascular disease that can cause sudden death in severe cases. Electro-cardiography (ECG) is the most well-known and widely applied method for heart diseases detection. Computer-aided diagnosis of ECG can help improve physician efficiency and reduce the rate of misdiagnosis of ECG. In this paper, we propose a method for arrhythmia classification based on the dense convolutional network (DenseNet) and efficient channel attention (ECA). Evaluation experiments were performed using the ECG records from the MIT-BIH database. The accuracy, sensitivity, specificity, and F1 values of 99.69%, 97.55%, 99.81%, and 97.72% were achieved for the six types of heartbeats classification, respectively. The experimental results demonstrate the validity and feasibility of the method, which can be used for ECG screening.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel CNN model with dense connectivity and attention mechanism for arrhythmia classification\",\"authors\":\"Qin Zhan, Peilin Li, Yongle Wu, Jingchun Huang, Xunde Dong\",\"doi\":\"10.1109/CBMS55023.2022.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac arrhythmia is a common cardiovascular disease that can cause sudden death in severe cases. Electro-cardiography (ECG) is the most well-known and widely applied method for heart diseases detection. Computer-aided diagnosis of ECG can help improve physician efficiency and reduce the rate of misdiagnosis of ECG. In this paper, we propose a method for arrhythmia classification based on the dense convolutional network (DenseNet) and efficient channel attention (ECA). Evaluation experiments were performed using the ECG records from the MIT-BIH database. The accuracy, sensitivity, specificity, and F1 values of 99.69%, 97.55%, 99.81%, and 97.72% were achieved for the six types of heartbeats classification, respectively. The experimental results demonstrate the validity and feasibility of the method, which can be used for ECG screening.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心律失常是一种常见的心血管疾病,严重者可导致猝死。心电图(electrocardiography, ECG)是最知名和应用最广泛的心脏病检测方法。心电计算机辅助诊断有助于提高医师工作效率,降低心电误诊率。本文提出了一种基于密集卷积网络(DenseNet)和有效通道注意(ECA)的心律失常分类方法。评估实验使用来自MIT-BIH数据库的心电记录进行。6种心跳分类的准确率、灵敏度、特异性和F1值分别为99.69%、97.55%、99.81%和97.72%。实验结果证明了该方法的有效性和可行性,可用于心电筛查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel CNN model with dense connectivity and attention mechanism for arrhythmia classification
Cardiac arrhythmia is a common cardiovascular disease that can cause sudden death in severe cases. Electro-cardiography (ECG) is the most well-known and widely applied method for heart diseases detection. Computer-aided diagnosis of ECG can help improve physician efficiency and reduce the rate of misdiagnosis of ECG. In this paper, we propose a method for arrhythmia classification based on the dense convolutional network (DenseNet) and efficient channel attention (ECA). Evaluation experiments were performed using the ECG records from the MIT-BIH database. The accuracy, sensitivity, specificity, and F1 values of 99.69%, 97.55%, 99.81%, and 97.72% were achieved for the six types of heartbeats classification, respectively. The experimental results demonstrate the validity and feasibility of the method, which can be used for ECG screening.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信