基于卷积神经网络的垃圾分类研究

Shanshan Meng, W. Chu
{"title":"基于卷积神经网络的垃圾分类研究","authors":"Shanshan Meng, W. Chu","doi":"10.1109/Indo-TaiwanICAN48429.2020.9181311","DOIUrl":null,"url":null,"abstract":"Recycling is already a significant work for all countries. Among the work needed for recycling, garbage classification is the most fundamental step to enable cost-efficient recycling. In this paper, we attempt to identify single garbage object in images and classify it into one of the recycling categories. We study several approaches and provide comprehensive evaluation. The models we used include support vector machines (SVM) with HOG features, simple convolutional neural network (CNN), and CNN with residual blocks. According to the evaluation results, we conclude that simple CNN networks with or without residual blocks show promising performances. Thanks to deep learning techniques, the garbage classification problem for the target database can be effectively solved.","PeriodicalId":171125,"journal":{"name":"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"A Study of Garbage Classification with Convolutional Neural Networks\",\"authors\":\"Shanshan Meng, W. Chu\",\"doi\":\"10.1109/Indo-TaiwanICAN48429.2020.9181311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recycling is already a significant work for all countries. Among the work needed for recycling, garbage classification is the most fundamental step to enable cost-efficient recycling. In this paper, we attempt to identify single garbage object in images and classify it into one of the recycling categories. We study several approaches and provide comprehensive evaluation. The models we used include support vector machines (SVM) with HOG features, simple convolutional neural network (CNN), and CNN with residual blocks. According to the evaluation results, we conclude that simple CNN networks with or without residual blocks show promising performances. Thanks to deep learning techniques, the garbage classification problem for the target database can be effectively solved.\",\"PeriodicalId\":171125,\"journal\":{\"name\":\"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Indo-TaiwanICAN48429.2020.9181311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

回收已经是所有国家的一项重要工作。在回收所需的工作中,垃圾分类是实现成本效益回收的最基本步骤。在本文中,我们试图识别图像中的单个垃圾物体,并将其分类到一个回收类别中。我们研究了几种方法并提供了综合评价。我们使用的模型包括带有HOG特征的支持向量机(SVM)、简单卷积神经网络(CNN)和带有残差块的CNN。根据评价结果,我们得出有或没有残块的简单CNN网络都有很好的性能。利用深度学习技术,可以有效地解决目标数据库的垃圾分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Garbage Classification with Convolutional Neural Networks
Recycling is already a significant work for all countries. Among the work needed for recycling, garbage classification is the most fundamental step to enable cost-efficient recycling. In this paper, we attempt to identify single garbage object in images and classify it into one of the recycling categories. We study several approaches and provide comprehensive evaluation. The models we used include support vector machines (SVM) with HOG features, simple convolutional neural network (CNN), and CNN with residual blocks. According to the evaluation results, we conclude that simple CNN networks with or without residual blocks show promising performances. Thanks to deep learning techniques, the garbage classification problem for the target database can be effectively solved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信